Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Mechanical Engineering

A Study Of Asymmetric Supersonic Wind Tunnel Nozzle Design, Brittany A. Davis May 2022

A Study Of Asymmetric Supersonic Wind Tunnel Nozzle Design, Brittany A. Davis

Mechanical & Aerospace Engineering Theses & Dissertations

Achieving higher Mach numbers for private and commercial flight is a growing interest in the aerospace community. To qualify vehicles prior to flight, tests must be run in wind tunnels. Asymmetric wind tunnel nozzles are of continuing interest to the aerospace community due to their ability to change throat geometry, allowing for a range of Mach numbers to be achieved that encompasses all of the supersonic regime. The sliding block wind tunnel at Old Dominion University (ODU) is designed for a range of Mach numbers from about 1.8 to 3.5 but is limited to an upper limit of 2.8 by …


Development And Applications Of Adjoint-Based Aerodynamic And Aeroacoustic Multidisciplinary Optimization For Rotorcraft, Ramiz Omur Icke Jul 2021

Development And Applications Of Adjoint-Based Aerodynamic And Aeroacoustic Multidisciplinary Optimization For Rotorcraft, Ramiz Omur Icke

Mechanical & Aerospace Engineering Theses & Dissertations

Urban Air Mobility (UAM) is one of the most popular proposed solutions for alleviating traffic problems in populated areas. In this context, the proposed types of vehicles mainly consist of rotors and propellers powered by electric motors. However, those rotary-wing components can contribute excessively to noise generation. Therefore, a significant noise concern emerges due to urban air vehicles in or around residential areas. Reducing noise emitted by air vehicles is critically important to improve public acceptance of such vehicles for operations in densely populated areas.

Two main objectives of the present dissertation are: (1) to expand the multidisciplinary optimization to …


Computational Analysis And Design Optimization Of Convective Pcr Devices, Jung Il Shu Jul 2019

Computational Analysis And Design Optimization Of Convective Pcr Devices, Jung Il Shu

Mechanical & Aerospace Engineering Theses & Dissertations

Polymerase Chain Reaction (PCR) is a relatively novel technique to amplify a few copies of DNA to a detectable level. PCR has already become common in biomedical research, criminal forensics, molecular archaeology, and so on. Many have attempted to develop PCR devices in numerous types for the purpose of the lab-on-chip (LOC) or point-of-care (POC). To use PCR devices for POC lab testing, the price must be lower, and the performance should be comparable to the lab devices. For current practices with the existing methods, the price is pushed up higher partially due to too much dependence on numerous developmental …


Simplified, Alternative Formulation Of Numerical Simulation Of Proton Exchange Membrane Fuel Cell, Russell L. Edwards Apr 2018

Simplified, Alternative Formulation Of Numerical Simulation Of Proton Exchange Membrane Fuel Cell, Russell L. Edwards

Mechanical & Aerospace Engineering Theses & Dissertations

Three-Dimensional proton exchange fuel cell (PEMFC) operation in steady-state is simulated with computational fluid dynamics / multiphysics software that is based upon the finite-element method. PEMFC operation involves the simultaneous simulation of multiple, interconnected physics involving fluid flows, heat transport, electrochemical reactions, and both protonic and electronic conduction. Modeling efforts have varied by how they treat the physics occurring within and adjacent to the membrane-electrode assembly (MEA). Several approaches treat the MEA as part of the computational domain, solving multiple, and coupled conservation equations via the CFD approach within the 3 regions of the MEA. The thickness dimensions of the …


Uncertainty Propagation And Robust Design In Cfd Using Sensitivity Derivatives, Michele M. Putko Jul 2004

Uncertainty Propagation And Robust Design In Cfd Using Sensitivity Derivatives, Michele M. Putko

Mechanical & Aerospace Engineering Theses & Dissertations

This study investigates and demonstrates a methodology for uncertainty propagation and robust design in Computational Fluid Dynamics (CFD). Efficient calculation of both first- and second-order sensitivity derivatives is requisite in the proposed methodology. In this study, first- and second-order sensitivity derivatives of code output with respect to code input are obtained through an efficient incremental iterative approach.

An approximate statistical moment method for uncertainty propagation is first demonstrated on a quasi one-dimensional (1-D) Euler CFD code. This method is then extended to a two-dimensional (2-D) subsonic inviscid model airfoil problem. In each application, given statistically independent, random, normally distributed input …


Three-Dimensional Aerodynamic Design Optimization Using Discrete Sensitivity Analysis And Parallel Computing, Amidu Olawale Oloso Apr 1997

Three-Dimensional Aerodynamic Design Optimization Using Discrete Sensitivity Analysis And Parallel Computing, Amidu Olawale Oloso

Mechanical & Aerospace Engineering Theses & Dissertations

A hybrid automatic differentiation/incremental iterative method was implemented in the general purpose advanced computational fluid dynamics code (CFL3D Version 4.1) to yield a new code (CFL3D.ADII) that is capable of computing consistently discrete first order sensitivity derivatives for complex geometries. With the exception of unsteady problems, the new code retains all the useful features and capabilities of the original CFL3D flow analysis code. The superiority of the new code over a carefully applied method of finite-differences is demonstrated.

A coarse grain, scalable, distributed-memory, parallel version of CFL3D.ADII was developed based on "derivative stripmining". In this data-parallel approach, an identical copy …