Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Computational fluid dynamics

PDF

Selected Works

Articles 1 - 2 of 2

Full-Text Articles in Mechanical Engineering

Dynamic Rating Of Overhead Transmission Lines Over Complex Terrain Using A Large-Eddy Simulation Paradigm, Tyler Phillips, Ray Deleon, Inanc Senocak Jun 2017

Dynamic Rating Of Overhead Transmission Lines Over Complex Terrain Using A Large-Eddy Simulation Paradigm, Tyler Phillips, Ray Deleon, Inanc Senocak

Inanc Senocak

Dynamic Line Rating (DLR) enables rating of power line conductors using real-time weather conditions. Conductors are typically operated based on a conservative static rating that assumes worst case weather conditions to avoid line sagging to unsafe levels. Static ratings can cause unnecessary congestion on transmission lines. To address this potential issue, a simulation-based dynamic line rating approach is applied to an area with moderately complex terrain. A micro-scale wind solver — accelerated on multiple graphics processing units (GPUs) — is deployed to compute wind speed and direction in the vicinity of powerlines. The wind solver adopts the large-eddy simulation technique …


Computational Fluid Dynamics In Congenital Heart Disease, William M. Decampli, I. Ricardo Argueta-Morales, Eduardo Divo, Alain J. Kassab May 2014

Computational Fluid Dynamics In Congenital Heart Disease, William M. Decampli, I. Ricardo Argueta-Morales, Eduardo Divo, Alain J. Kassab

Eduardo Divo

Computational fluid dynamics has been applied to the design, refinement, and assessment of surgical procedures and medical devices. This tool calculates flow patterns and pressure changes within a virtual model of the cardiovascular system. In the field of paediatric cardiac surgery, computational fluid dynamics is being used to elucidate the optimal approach to staged reconstruction of specific defects and study the haemodynamics of the resulting anatomical configurations after reconstructive or palliative surgery. In this paper, we review the techniques and principal findings of computational fluid dynamics studies as applied to a few representative forms of congenital heart disease.