Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Mechanical Engineering

Evaluation And Enhancement Of Clean Energy Systems: Analytical, Computational And Experimental Study Of Solar And Nuclear Cycles, Nima Fathi Jul 2017

Evaluation And Enhancement Of Clean Energy Systems: Analytical, Computational And Experimental Study Of Solar And Nuclear Cycles, Nima Fathi

Mechanical Engineering ETDs

Clean (and specifically renewable) energy is steadily improving its global share. However, finite availability of fossil fuels and the growing effects of climate change make it an urgent priority to convince the industry and governments to incentivize investment in the renewable energy field and to make it more attractive by decreasing the capital cost. Until recently, uncertainties in funding limited renewable energy development, especially in the US. That limitation has been one of the barriers to progress. Another limitation of many renewable energy systems is the variability in their output, which makes them unsuitable for baseline power production. Therefore, fossil ...


A Reduced Order Model For Efficient Physiological Flow Analysis In Aneurysms By Proper Orthogonal Decomposition, Gary Han Chang, Yahya Modarres-Sadeghi May 2016

A Reduced Order Model For Efficient Physiological Flow Analysis In Aneurysms By Proper Orthogonal Decomposition, Gary Han Chang, Yahya Modarres-Sadeghi

UMass Center for Clinical and Translational Science Research Retreat

Simulating physiological flows using computational fluid dynamics (CFD) remains to be computationally expensive and difficult for clinical usage because of the physiological flow and geometrical complexity involved in patient specific situations. We use the reduced order modeling (ROM) of such systems with high nonlinearity and geometrical non-uniformity to replace the full, nonlinear model with a low-degrees of freedom ROM model. We construct ROM models by the proper orthogonal decomposition (POD) method to estimate the flow-induced wall shear stress (WSS) and pressure loading of a simplified abdominal aortic aneurysm and a bifurcation cerebral aneurysm. This method allows us to investigate a ...


Improving Ventricular Catheter Design Through Computational Fluid Dynamics, Sofy Hefets Weisenberg May 2016

Improving Ventricular Catheter Design Through Computational Fluid Dynamics, Sofy Hefets Weisenberg

Masters Theses

Cerebrospinal fluid (CSF) shunts are fully implantable medical devices that are used to treat patients suffering from conditions characterized by elevated intracranial pressure, such as hydrocephalus. In cases of shunt failure or malfunction, patients are often required to endure one or more revision surgeries to replace all or part of the shunt. One of the primary causes of CSF shunt failure is obstruction of the ventricular catheter, a component of the shunt system implanted directly into the brain's ventricular system. This work aims to improve the design of ventricular catheters in order to reduce the incidence of catheter obstruction ...


Cavitation From A Butterfly Valve: Comparing 3d Simulations To 3d X-Ray Computed Tomography Flow Visualization, Graham Brett, Marc Riveland, Terrence C. Jensen, Theodore J. Heindel Jul 2011

Cavitation From A Butterfly Valve: Comparing 3d Simulations To 3d X-Ray Computed Tomography Flow Visualization, Graham Brett, Marc Riveland, Terrence C. Jensen, Theodore J. Heindel

Mechanical Engineering Conference Presentations, Papers, and Proceedings

Flow control valves may experience localized cavitation when the local static pressure drops to the liquid vapor pressure. Localized damage to the valve and surrounding area can occur when the vapor cavity collapses. Valve designs that reduce cavitation are based on empirical evidence and accumulated experience, but there are still considerable cavitation problems in industry. Valve designers may use computational fluid dynamics (CFD) to simulate cavitation in flow control valves, but model validation is challenging because there are limited data of local cavitation from the valve surface. Typically, the intensity of cavitation in a control valve is inferred from measurements ...


Modeling A Biomass Fluidizing Bed With Side Port Air Injection, Mirka Deza, Francine Battaglia, Theodore J. Heindel Aug 2009

Modeling A Biomass Fluidizing Bed With Side Port Air Injection, Mirka Deza, Francine Battaglia, Theodore J. Heindel

Mechanical Engineering Conference Presentations, Papers, and Proceedings

Fluidized beds are used to gasify materials such as coal or biomass in the production of producer gas. Modeling these reactors using computational fluid dynamics is advantageous when performing parametric studies for design and scale-up. While two-dimensional simulations are easier to perform than three-dimensional simulations, they may not capture the proper physics. This paper compares two- and three-dimensional simulations with experiments for a reactor geometry with side port air injection. The side port is located within the bed region so that the injected air can help promote mixing. Of interest in this study is validating the hydrodynamics of fluidizing biomass ...


Modeling Of Dispersed Phase By Lagrangian Approach In Fluent - 2d Exercise, Kari Myöhänen Jan 2008

Modeling Of Dispersed Phase By Lagrangian Approach In Fluent - 2d Exercise, Kari Myöhänen

Kari Myöhänen

This shows an example calculation applying DPM model in Fluent. This is related to the other DPM presentation and was prepared for the course 'Theory and simulation of dispersed-phase multiphase flows" by Dr. Payman Jalali, Lappeenranta University of Technology.


Modeling Of Dispersed Phase By Lagrangian Approach In Fluent, Kari Myöhänen Jan 2008

Modeling Of Dispersed Phase By Lagrangian Approach In Fluent, Kari Myöhänen

Kari Myöhänen

This is a seminar work prepared for a course 'Theory and simulation of dispersed-phase multiphase flows' by Dr. Payman Jalali, Lappeenranta University of Technology


The Microchannel Flow Of A Micropolar Fluid, Guohua Liu Oct 1999

The Microchannel Flow Of A Micropolar Fluid, Guohua Liu

Doctoral Dissertations

Micro-channel flows have been computed to investigate the influence of Navier-Stokes formulation for the slip-flow boundary condition, and a micro-polar fluid model, respectively.

The results of the slip boundary condition show that the current methodology is valid for slip-flow regime (i.e., for values of Knudsen number less than approximately 0.1). Drag reduction phenomena apparent in some micro-channels can be explained by slip-flow theory. These results are in agreement with some computations and experiments.

An ad hoc micro-polar fluid model is developed to investigate the influence of micro effects, such as micro-gyration, in micro-scale flows. The foundation of the ...