Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Composites

Mechanical & Aerospace Engineering Theses & Dissertations

Articles 1 - 8 of 8

Full-Text Articles in Mechanical Engineering

The Effect Of Through Thickness Reinforcement Angle On The Disbonding Behavior In Skin-Stringer Configuration, Christopher John Morris Oct 2023

The Effect Of Through Thickness Reinforcement Angle On The Disbonding Behavior In Skin-Stringer Configuration, Christopher John Morris

Mechanical & Aerospace Engineering Theses & Dissertations

Post-cure through thickness reinforcement is a method used to increase the mechanical properties of composite laminates in the transverse direction. This study conducted a test on skin-stringer structures bonded together in three configurations using an epoxy or thermoplastic adhesive at the interface with reinforcing pins inserted through the laminate thickness located at the edge of the stringer at differing angles between -30º and 30º. The fabrication of these samples in configurations B and C consisted of the use of carbon fiber prepeg laminate at a ply orientation of [02902]2s for the skin and [0 90] …


Chemical And Physical Interaction Mechanisms And Multifunctional Properties Of Plant Based Graphene In Carbon Fiber Epoxy Composites, Daniel W. Mulqueen Aug 2023

Chemical And Physical Interaction Mechanisms And Multifunctional Properties Of Plant Based Graphene In Carbon Fiber Epoxy Composites, Daniel W. Mulqueen

Mechanical & Aerospace Engineering Theses & Dissertations

Graphene has generated substantial interest as a filler due to its exceptional strength, flexibility, and conductivity but faces obstacles in supply and implementation. A renewable, plant-based graphene nanoparticle (pGNP) presents a more accessible and sustainable filler with the same properties as mineral graphenes. In this study, the mechanisms of graphene reinforcement in carbon fiber reinforced plastic (CFRP) were examined, along with the resulting improvements to mechanical strength, resistance to crack propagation, electrical and thermal conductivity at elevated temperatures. pGNP, produced from renewable biomass, was shown to have a graphitic structure with flakes 3-10 layers thick and a median lateral size …


Fusion Bonding Behavior Of 3d Printed Pa6/Cf Composites Via Post Fabrication Compaction, Gonzalo Fernandez Mediavilla May 2023

Fusion Bonding Behavior Of 3d Printed Pa6/Cf Composites Via Post Fabrication Compaction, Gonzalo Fernandez Mediavilla

Mechanical & Aerospace Engineering Theses & Dissertations

Additive manufacturing (AM) is becoming a robust production technology for aerospace, healthcare, and construction industries among others. Fused Deposition Modelling (FDM) is one of the methods most used to 3D print products. FDM has limitation due to interlayer adhesion and restriction imposed by the printing direction. Specially with AM composites, as reinforced nylon PA6 with short fibers, parts show more strength along the direction of the filament due to the alignment of the carbon fibers, but weaker in other directions. The proposed method to solve this issue is to print parts separately and join them together by fusion bonding. PA6/CF …


Finite Element Analysis Investigation Of Hybrid Thin-Ply Composites For Improved Performance Of Aerospace Structures, Alana M. Zahn Oct 2020

Finite Element Analysis Investigation Of Hybrid Thin-Ply Composites For Improved Performance Of Aerospace Structures, Alana M. Zahn

Mechanical & Aerospace Engineering Theses & Dissertations

Commercial and private aircraft have a need for strong yet light materials in order to have the most ideal performance possible. This study looks at the use of thin-ply composite materials to improve the performance of aircraft structures by means of weight savings and/or strength increase when compared to laminates that are composed of exclusively standard-ply materials. In order to perform an investigation based solely on finite element analysis, validation efforts were performed using test data from open hole tension, open hole compression, notched tension, and notched compression specimens. Once the models were validated sufficiently, the same modeling practices were …


Mechanism Of Compaction With Wrinkle Formation During Automatic Stitching Of Dry Fabrics And The Size Effect Of Compression Molded Discontinuous Fiber-Reinforced Composites, Anibal Benjamin Beltran Laredo Aug 2020

Mechanism Of Compaction With Wrinkle Formation During Automatic Stitching Of Dry Fabrics And The Size Effect Of Compression Molded Discontinuous Fiber-Reinforced Composites, Anibal Benjamin Beltran Laredo

Mechanical & Aerospace Engineering Theses & Dissertations

With an ever-increasing demand for composites, more ways of manufacturing them are becoming popular and widely used. Stitching of dry fabrics is an efficient method for improving delamination resistance. Discontinuous fiber reinforced composites can be used as a lightweight alternative material for metals through a process of compression molding, which allows for complex shape manufacturing while offering structural grade mechanical properties.

This study demonstrates how the stitching of dry fabrics can be adapted to more complex surfaces. The consequences of stitching of curvilinear surfaces can result in defect formation. Therefore, to understand the physical formation of possible defects, experimental characterization …


Through-Thickness Reinforcement And Repair Of Carbon Fiber Based Honeycomb Structures Under Flexure And Tension Of Adhesively Bonded Joints, Aleric Alden Sanders Apr 2020

Through-Thickness Reinforcement And Repair Of Carbon Fiber Based Honeycomb Structures Under Flexure And Tension Of Adhesively Bonded Joints, Aleric Alden Sanders

Mechanical & Aerospace Engineering Theses & Dissertations

Repair and reinforcement of composite honeycomb structures is an area of concern as higher demands are being placed on high strength, lightweight structural materials, such as carbon fiber reinforced plastics and corresponding honeycomb structures. A common issue with these structures is when a delamination in the facesheet may form and spread, leading to a failure scenario. An investigation of adding a through thickness reinforcement (TTR) to these structures at the sample level that undergo four-point-bending, tension, and joining methods is conducted throughout this thesis. The embedding of pultruded carbon fiber rods is found to be an ideal addition to composite …


Human-Robot Collaborative Force-Controlled Micro-Drilling For Advanced Manufacturing And Medical Applications, Parimal Mahesh Prajapati Jan 2018

Human-Robot Collaborative Force-Controlled Micro-Drilling For Advanced Manufacturing And Medical Applications, Parimal Mahesh Prajapati

Mechanical & Aerospace Engineering Theses & Dissertations

Robotic drilling finds applications in diverse fields ranging from advanced manufacturing to the medical industry. Recent advances in low-cost, and human-safe, collaborative robots (e.g., Sawyer) are enabling us to rethink the possibilities in which robots can be deployed for such tedious and time-consuming tasks. This thesis presents a robotic drilling methodology with features of force-control enabled micro-drilling and human-robot collaboration to reduce programming efforts and enhance drilling performance. A Sawyer robot from Rethink Robotics, which offers safe physical interactions with a human co-worker, kinesthetic teaching, and force control, is used as the test bed. The robot’s end-effector was equipped with …


An Analytical And Experimental Study Of Clearance And Bearing-Bypass Load Effects In Composite Bolted Joints, Rajiv Vikas Arun Naik Jul 1986

An Analytical And Experimental Study Of Clearance And Bearing-Bypass Load Effects In Composite Bolted Joints, Rajiv Vikas Arun Naik

Mechanical & Aerospace Engineering Theses & Dissertations

A combined analytical and experimental study is conducted to determine the effects of clearance and bearing-bypass loading for mechanically fastened joints in composites. A simple method of analysis is developed to account for the nonlinear effects of bolt-hole clearance. The nonlinear load-contact variations for clearance-fit fasteners are also measured using specially instrumented fasteners. For a quasi-isotropic graphite/epoxy laminate, results show that the contact arc as well as the peak stresses around the hole and their locations are strongly influenced by the clearance. After a slight initial nonlinearity, the peak stresses vary linearly with applied load. The typical clearance levels are …