Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 24 of 24

Full-Text Articles in Mechanical Engineering

Optimized 3d-Printing Of Carbon Fiber-Reinforced Polyether-Ether-Ketone (Cfr-Peek) For Use In Overmolded Lattice Composite, Ryan C. Ogle Dec 2022

Optimized 3d-Printing Of Carbon Fiber-Reinforced Polyether-Ether-Ketone (Cfr-Peek) For Use In Overmolded Lattice Composite, Ryan C. Ogle

Masters Theses

Current orthopedic implants are overwhelmingly composed from metallic materials. These implants show superior mechanical properties, but this can additionally result in stress shielding due to a modulus mismatch between the bone tissue and implanted device. Polymeric implants reduce this stress shielding effect but have much lower mechanical properties, limiting their use. Polylactic acid (PLA) is a widely used biodegradable thermoplastic polymer, however, its use has been limited by the polymer’s mechanical properties and rapid loss of strength during degradation in vivo. Polyether-ether-ketone (PEEK) is another common biocompatible polymer , with chemical and mechanical properties which make it a popular alternative …


Composite Pegboard, Asa J. Cusick, Luis Corrales, Joelle Hylton, Wyatt Pauley Jun 2021

Composite Pegboard, Asa J. Cusick, Luis Corrales, Joelle Hylton, Wyatt Pauley

Mechanical Engineering

Many of those with mobility limitations who are told they will need a wheelchair for the rest of their lives can actually begin to stand and walk again given the proper tools and support. The current design for a wheelchair seeking to support this process is overly complex, heavy, and exhibits some features that could potentially pose a serious health hazard to those using it. The scope of this project is to aid in the design of an adaptable composite wheelchair frame that can be both lightweight and strong, while still allowing for physical diversity of potential users. Through research …


3d Printing Of Hybrid Architectures Via Core-Shell Material Extrusion Additive Manufacturing, Robert Cody Pack May 2021

3d Printing Of Hybrid Architectures Via Core-Shell Material Extrusion Additive Manufacturing, Robert Cody Pack

Doctoral Dissertations

Biological materials often employ hybrid architectures, such as the core-shell motif present in porcupine quills and plant stems, to achieve unique properties and performance. Drawing inspiration from these natural materials, a new method to fabricate lightweight and stiff core-shell architected filaments is reported. Specifically, a core-shell printhead conducive to printing highly loaded fiber-filled inks, as well as a new low-density syntactic foam ink, are utilized to 3D-print core-shell architectures consisting of a syntactic epoxy foam core surrounded by a stiff carbon fiber-reinforced epoxy composite shell. Effective printing of test specimens and structures with controlled geometry, composition, and architecture is demonstrated …


Design Of Natural Composite I-Beam For Sampe 2019, Brian Harkness Jun 2019

Design Of Natural Composite I-Beam For Sampe 2019, Brian Harkness

Honors Theses

In recent years, the demand for high performance, lightweight, fiber-reinforced composites have grown substantially. Fiberglass and carbon fiber have exemplary material properties that meet the demand and have set the industry standard for performance materials. Although these materials meet their design function, they suffer from high environmental impacts throughout their life cycle and are not cost effective to produce. Flax fiber composites have comparable properties to fiberglass but can be produced more efficiently and production requires much less energy consumption. Flax is a readily available, renewable material that will easily biodegrade once it is the end of its useful life …


Flexure Properties Of 3d Printed Nylon Carbon Fiber Composite And Stiffness Of 3d Printed Modified Cuttlefish Bone Structure, Shashikanth Reddy Jan 2019

Flexure Properties Of 3d Printed Nylon Carbon Fiber Composite And Stiffness Of 3d Printed Modified Cuttlefish Bone Structure, Shashikanth Reddy

Electronic Theses and Dissertations

Flexure strength is one of the most widely used mechanical properties to represent the mechanical behavior of the composite. Fiber reinforcements increase the flexure strength of a composite. Specifically, there has been tremendous growth in the use of Carbon Fiber (CF) in the manufacturing industry due to its significant contribution to enhance the mechanical properties of a composite. Fiber orientation, void content, bonding between the layers (delamination), and fiber distribution are some of the factors that affect the flexure strength of a reinforced composite. The laminate (composite with reinforced layers) composites, has been a focus of study by researchers from …


Modeling And Simulation Of The Thermoforming Process In Thermoplastic-Matrix Composite Materials, Philip M. Bean Dec 2018

Modeling And Simulation Of The Thermoforming Process In Thermoplastic-Matrix Composite Materials, Philip M. Bean

Electronic Theses and Dissertations

Thermoplastic-matrix composite materials have unique advantages over traditional thermosets including faster processing, improved fracture toughness, and recyclability. These and other benefits have caused increasing interest in the use of these materials in both aerospace and automotive industries. Due to the differences in behavior, these materials require a different type of manufacturing process to thermoset matrix composites. This manufacturing process generally involves using pre manufactured tape-layers. These layers, containing both thermoplastic-matrix and fiber-reinforcement, are aligned to the desired orientation, and stacked up into a “tailored blank” using an automated tape layup machine. They are then heated to the thermoplastic melting temperature …


Reinventing The Wheel, Esther K. Unti, Ahmed Z. Shorab, Patrick B. Kragen, Adam M. Menashe Dec 2018

Reinventing The Wheel, Esther K. Unti, Ahmed Z. Shorab, Patrick B. Kragen, Adam M. Menashe

Mechanical Engineering

Reinventing the Wheel selected tires and designed wheels for the 2018 Cal Poly, San Luis Obispo Formula SAE combustion vehicle. Available tire options were evaluated for steady-state and transient performance as well as vehicle integration. A single-piece composite wheel with hollow spokes was designed to meet stiffness, strength, and tolerance requirements. A detailed study of wheel loading and geometric structural efficiency was performed. Finite element analysis was used to iterate the geometry and laminate. A two-piece male mold was designed and machined to manufacture the wheel. Removable silicone inserts were used to create the hollow spokes.


Feasibility Of Hybrid Thermoplastic Composite-Concrete Load Bearing System, Camerin M. Seigars Aug 2018

Feasibility Of Hybrid Thermoplastic Composite-Concrete Load Bearing System, Camerin M. Seigars

Electronic Theses and Dissertations

Thermoplastic composites have many advantages over thermoset composites such as being recyclable, rapidly manufacturable, and more impact resistant. The goal of this thesis is to assess the feasibility of using thermoplastic composites in structural applications through literature review, mechanical testing, design of a load-bearing hybrid composite-concrete structures, and the implementation of thermoplastic composites for tensile reinforcement of concrete. The study had four objectives covering the stated goal.

  1. Conduct a literature review to direct thermoplastic material selection
  2. Characterize thermoplastic material mechanical properties using standardized mechanical testing
  3. Design a hybrid composite-reinforced concrete beam, and
  4. Develop thermoplastic shear connectors to develop composite action …


Design Survey Of Laminated Composite I-Beam, Mrinmoy Saha Aug 2018

Design Survey Of Laminated Composite I-Beam, Mrinmoy Saha

All Graduate Plan B and other Reports, Spring 1920 to Spring 2023

Composite I-beams are popular for high-strength low-weight applications. Learning the macro-mechanics and designing the composite I-beam properly are necessary. In this report, a design overview of the composite I-beam is discussed which is based on classical lamination theory where it includes the homogenization approach, the plane stress assumption and the Kirchhoff hypothesis. Using these assumptions, a method was developed to come up with the effective material properties of a beam. Formulas to calculate maximum deflection and maximum bending stress and shear stress and the stress concentration at the connection of web-flange are discussed which describe ways for designing and manufacturing …


Novel Structural Health Monitoring And Damage Detection Approaches For Composite And Metallic Structures, Shervin Tashakori Jun 2018

Novel Structural Health Monitoring And Damage Detection Approaches For Composite And Metallic Structures, Shervin Tashakori

FIU Electronic Theses and Dissertations

Mechanical durability of the structures should be continuously monitored during their operation. Structural health monitoring (SHM) techniques are typically used for gathering the information which can be used for evaluating the current condition of a structure regarding the existence, location, and severity of the damage. Damage can occur in a structure after long-term operating under service loads or due to incidents. By detection of these defects at the early stages of their growth and nucleation, it would be possible to not only improve the safety of the structure but also reduce the operating costs. The main goal of this dissertation …


Composite Suspension For A Mass Market Vehicle, Sarah M. Chapiama, Brian Auyeung, Jose Guerrero, Ethan Lau Jun 2018

Composite Suspension For A Mass Market Vehicle, Sarah M. Chapiama, Brian Auyeung, Jose Guerrero, Ethan Lau

Mechanical Engineering

Statement of Confidentiality: The complete senior project report was submitted to the project advisor and sponsor. The results of this project are of a confidential nature and will not be published at this time.


Open Source Multi-Head 3d Printer For Polymer-Metal Composite Component Manufacturing, J. Laureto, Joshua M. Pearce Mar 2018

Open Source Multi-Head 3d Printer For Polymer-Metal Composite Component Manufacturing, J. Laureto, Joshua M. Pearce

Joshua M. Pearce

As low-cost desktop 3D printing is now dominated by free and open source self-replicating rapid prototype (RepRap) derivatives, there is an intense interest in extending the scope of potential applications to manufacturing. This study describes a manufacturing technology that enables a constrained set of polymer-metal composite components. This paper provides (1) free and open source hardware and (2) software for printing systems that achieves metal wire embedment into a polymer matrix 3D-printed part via a novel weaving and wrapping method using (3) OpenSCAD and parametric coding for customized g-code commands. Composite parts are evaluated from the technical viability of manufacturing …


Manufacture Of Complex Geometry Component For Advanced Material Stiffness, David Russell Bydalek Mar 2018

Manufacture Of Complex Geometry Component For Advanced Material Stiffness, David Russell Bydalek

Master's Theses

The manufacture, laminate design, and modeling of a part with complex geometry are explored. The ultimate goal of the research is to produce a model that accurately predicts part stiffness. This is validated with experimental results of composite parts, which refine material properties for use in a final prototype part model. The secondary goal of this project is to explore manufacturing methods for improved manufacturability of the complex part. The manufacturing portion of the thesis and feedback into material model has incorporated a senior project team to perform research on manufacturing and create composite part to be used for experimental …


Aluminum Matrix Syntactic Foam Fabricated With Additive Manufacturing, M. Spratt, Joseph William Newkirk, K. Chandrashekhara Aug 2017

Aluminum Matrix Syntactic Foam Fabricated With Additive Manufacturing, M. Spratt, Joseph William Newkirk, K. Chandrashekhara

Materials Science and Engineering Faculty Research & Creative Works

Syntactic foams are lightweight structural composites with hollow reinforcing particles embedded in a soft matrix. These materials have applications in transportation, packaging, and armor due to properties such as relatively high specific stiffness, acoustic dampening, and impact absorption. Aluminum matrices are the most widely studied of metal matrix syntactic foams, but there is little to no research in regards to processing the foams with additive manufacturing. It is theorized that the fast cooling rates and limited kinetic energy input of additive could reduce two issues commonly associated with processing syntactic foams: microsphere flotation in the melt and microsphere fracture during …


Open Source Multi-Head 3d Printer For Polymer-Metal Composite Component Manufacturing, J. Laureto, Joshua M. Pearce Jun 2017

Open Source Multi-Head 3d Printer For Polymer-Metal Composite Component Manufacturing, J. Laureto, Joshua M. Pearce

Department of Materials Science and Engineering Publications

As low-cost desktop 3D printing is now dominated by free and open source self-replicating rapid prototype (RepRap) derivatives, there is an intense interest in extending the scope of potential applications to manufacturing. This study describes a manufacturing technology that enables a constrained set of polymer-metal composite components. This paper provides (1) free and open source hardware and (2) software for printing systems that achieves metal wire embedment into a polymer matrix 3D-printed part via a novel weaving and wrapping method using (3) OpenSCAD and parametric coding for customized g-code commands. Composite parts are evaluated from the technical viability of manufacturing …


Development Of 3d Compression Molded Composite Primary Structure, Sean D. Tischler, Jacob H. Goldstein, Alea A. Perez Jun 2017

Development Of 3d Compression Molded Composite Primary Structure, Sean D. Tischler, Jacob H. Goldstein, Alea A. Perez

Mechanical Engineering

The work accomplished by the Black Gold team improved upon the carbon fiber compression molding research and information available on the Cal Poly San Luis Obispo campus. The team used the rear suspension rocker arm off a Ventana Alpino mountain bike as a design goal for this project. This research and body of work includes the methods used to design a compression molded part for complex part loading and shape. This extends to the process of choosing an appropriate layup process, in addition to benefits and drawbacks of the use of chopped fibers in compression molding. The research includes the …


Bear Minimum: Ultralight Composite Bear Canister, Rama B. Adajian, Adam C. Eisenbarth Jun 2017

Bear Minimum: Ultralight Composite Bear Canister, Rama B. Adajian, Adam C. Eisenbarth

Mechanical Engineering

The ultralight backpacking community needs a strong, easy to use, safe bear canister that is lighter than current market products for trekking in the backcountry. A full design of the lid for the bear canister is to be completed. This includes the locking mechanism to ensure it is bear proof, the interface between the lid and the canister, and the structure of the lid so it passes the strength and weight specifications. The lid, along with the already designed canister body, is to be manufactured with formal documentation. The lid will initially be tested separately and then with the canister …


Utilizing Reprap Style 3d Printers For The Manufacturing Of Composite Heat Exchangers, John Laureto Jan 2017

Utilizing Reprap Style 3d Printers For The Manufacturing Of Composite Heat Exchangers, John Laureto

Dissertations, Master's Theses and Master's Reports

The low cost 3D printing market is currently dominated by the application of RepRap (self-replicating rapid-prototyper) variants. Presented in this document are practical utilizations of RepRap technology. Developed are innovative processes to manufacture composite materials systems for thermal management solutions.

First, a laser polymer welder system is validated by quantifying maximum peak load and weld width of linear low density polyethylene (LLDPE) lap welds as a function of linear energy density. The development of practical engineering data, in this application, is critical to producing mechanically durable welds. Developed laser and printer parameter sets allow for manufacturing of LLDPE multi-layered heat …


Compression Molded Composite Component, Greg Hermansen, Larsson Johnson, Joanne Medrano, Kyle Hammell Dec 2016

Compression Molded Composite Component, Greg Hermansen, Larsson Johnson, Joanne Medrano, Kyle Hammell

Mechanical Engineering

The following final design report outlines the design and fabrication of a carbon fiber compression molded sunglasses case. It intends to guide the development of a future lab activity for a composites undergraduate course at Cal Poly – San Luis Obispo. The activity aims to support an educational investigation in "out-of-autoclave" composites manufacturing methods, such as compression molding, which offer some key benefits over autoclave molding. The methodology behind the creation of a conceptual design, an initial prototype, and a final product is laid out in detail below.


Ultra-Light Bear Canister, Naveen Beasley, Eli Rogers, Cory Wilson, Donald Wood Jun 2016

Ultra-Light Bear Canister, Naveen Beasley, Eli Rogers, Cory Wilson, Donald Wood

Mechanical Engineering

A bear canister is the primary tool used by outdoor enthusiasts to protect their food from bears while camping or backpacking. There are many effective products currently on the market, however many are not designed with reduced weight in mind. Hardcore backpackers want to have the lightest gear possible to ease the strain of carrying a large pack for sometimes weeks at a time.

Current bear canisters exist that utilize carbon fiber for weight reduction, however they rely on stock carbon tubes and lack engineering analysis, and no competitor has a fully composite bear canister available. Our sponsor, Nick Hellewell, …


Formula Sae Hybrid Carbon Fiber Monocoque / Steel Tube Frame Chassis, Matthew Hagan, John Rappolt, John Waldrop Jun 2014

Formula Sae Hybrid Carbon Fiber Monocoque / Steel Tube Frame Chassis, Matthew Hagan, John Rappolt, John Waldrop

Mechanical Engineering

The Cal Poly Formula SAE Team created this project in order to design and fabricate a high-performance chassis which would be competitive at 2013 FSAE Lincoln, and to document the process so that future teams could more easily create a chassis. One of the main goals was to reduce weight from the 143- lb 2012 chassis subsystem. A weight of 95 lb was achieved, with 82 lb in the chassis structure itself and a predicted torsional stiffness of 1700 lb*ft/deg. Composite materials design and manufacturing techniques were developed during the project. Design, testing, and manufacturing processes are detailed, and results …


Human Powered Helicopter: Rotor Structure, Joseph Ram, Juan Carlos Olvera Jun 2012

Human Powered Helicopter: Rotor Structure, Joseph Ram, Juan Carlos Olvera

Mechanical Engineering

The following report encompasses the Human Powered Helicopter Rotor Team’s conceptual models and ideas based on research and modeling analysis. The following gives an overview of material researched, concept generation, analyzation, manufacturing, and testing for a rotor structure to be installed in a Human Powered Helicopter.


Advanced Design Optimization For Composite Structure: Stress Reduction, Weight Decrease And Manufacturing Cost Savings, Shayan Ahmadian May 2012

Advanced Design Optimization For Composite Structure: Stress Reduction, Weight Decrease And Manufacturing Cost Savings, Shayan Ahmadian

Master's Theses

An injection moldable chopped fiber composite actuator with detailed drawing and tolerances was designed within one year. A vendor was selected and a quote for injection molding tooling cost for production was obtained and the first prototype was built in addition of six months. The risks are identified and material characterization tests are proposed.

The objective of this project was redesigning an aluminum made actuator with a continuous fiber composite for weight saving purposes. After searching the literature and consulting with experts in the field it was concluded that manufacturing costs associated with continuous fiber composite are 3 times as …


Natural Fibers And Fiberglass: A Technical And Economic Comparison, Justin Andrew Zsiros Jun 2010

Natural Fibers And Fiberglass: A Technical And Economic Comparison, Justin Andrew Zsiros

Theses and Dissertations

Natural fibers have received attention in recent years because of their minimal environmental impact, reasonably good properties, and low cost. There is a wide variety of natural fibers suitable for composite applications, the most common of which is flax. Flax has advantages in tensile strength, light weight, and low cost over other natural fibers. As with other natural and synthetic fibers, flax is used to reinforce both thermoset and thermoplastic matrices. When flax is used in thermoplastic matrices, polypropylene and polyethylene are the main resins used. Although at first glance flax may seem to be a cheaper alternative to fiberglass, …