Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Mechanical Engineering

Gasoline Confined In Nano-Porous Media, Matthew Giso Jun 2016

Gasoline Confined In Nano-Porous Media, Matthew Giso

Honors Theses

The heat of combustion was determined for gasoline confined in nano-porous media of differing pore size by bomb calorimetry. The heat of combustion of the confined fuels was comparable to that of bulk within the experimental uncertainty. This suggests that all of the confined fuel burns without any flame quenching and no chemical interactions at the interface between pore walls and fuel mitigate combustion.


Secondary Droplet Breakup In Periodic Aerodynamic Flows Using Computational Fluid Dynamics, Krystle Gallo Jun 2012

Secondary Droplet Breakup In Periodic Aerodynamic Flows Using Computational Fluid Dynamics, Krystle Gallo

Honors Theses

Combustion instability is characterized by periodic fluctuations during the combustion process. Such instabilities can cause a reduction in engine performance and damage to engine components. In liquid fueled combustion, some types of combustion instability may be driven by changes in fuel droplet size distribution. The fuel droplet size distribution can be changed if the original or “primary” fuel droplets are broken apart by the flow. This is called secondary droplet breakup. The smaller drops that are created during breakup are consumed more rapidly and increase the energy release rate, which may act as a sustaining force of the instability. Currently, …


Design Of A Liquid Fuel Injector For Alternative Fuel Studies In An Atmospheric Model Gas Turbine Combustor, John Stevenson Jan 2011

Design Of A Liquid Fuel Injector For Alternative Fuel Studies In An Atmospheric Model Gas Turbine Combustor, John Stevenson

Honors Theses

A new liquid-fuel injector was designed for use in the atmospheric-pressure, model gas turbine combustor in Bucknell University’s Combustion Research Laboratory during alternative fuel testing. The current liquid-fuel injector requires a higher-than-desired pressure drop and volumetric flow rate to provide proper atomization of liquid fuels. An air-blast atomizer type of fuel injector was chosen and an experiment utilizing water as the working fluid was performed on a variable-geometry prototype. Visualization of the spray pattern was achieved through photography and the pressure drop was measured as a function of the required operating parameters. Experimental correlations were used to estimate droplet sizes …