Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Mechanical Engineering

Carbon Articulating Backpack Spine, Salvatore Monforte Iii, Darci Lawrence, Savan Patel Dec 2015

Carbon Articulating Backpack Spine, Salvatore Monforte Iii, Darci Lawrence, Savan Patel

Mechanical Engineering

In the field, firefighters and Urban Search and Rescue (USAR) personnel need to transport variable loads efficiently, safely, and comfortably while simultaneously performing certain physical tasks. Current models of external and internal framed backpacks distribute the load of a pack efficiently, but do not allow for the natural movement of the wearer. Wolfpack Gear, Inc. proposed the need for a system which both effectively carries a load and allows for the unhindered natural movement of the user. The goal of this project was to design, build, and test an articulating backpack support system. The first stage of the project comprised …


Size-Controlled Large-Diameter And Few-Walled Carbon Nanotube Catalysts For Oxygen Reduction, Xianliang Wang, Qing Li, Hengyu Pan, Ye Lin, Yujie Ke, Haiyang Sheng, Mark T. Swihart, Gang Wu Nov 2015

Size-Controlled Large-Diameter And Few-Walled Carbon Nanotube Catalysts For Oxygen Reduction, Xianliang Wang, Qing Li, Hengyu Pan, Ye Lin, Yujie Ke, Haiyang Sheng, Mark T. Swihart, Gang Wu

Faculty Publications

We demonstrate a new strategy for tuning the size of large-diameter and few-walled nitrogen-doped carbon nanotubes (N-CNTs) from 50 to 150 nm by varying the transition metal (TM = Fe, Co, Ni or Mn) used to catalyze graphitization of dicyandiamide. Fe yielded the largest tubes, followed by Co and Ni, while Mn produced a clot-like carbon morphology. We show that morphology is correlated with electrocatalytic activity for the oxygen reduction reaction (ORR). A clear trend of Fe > Co > Ni > Mn for the ORR catalytic activity was observed, in both alkaline media and more demanding acidic media. The Fe-derived N-CNTs exhibited …


Carbon Fiber Monocoque Development For A Formula Sae Racecar, Andrew Cunningham, Andrew Ferrell, Matthew Lee, Tony Loogman Jun 2015

Carbon Fiber Monocoque Development For A Formula Sae Racecar, Andrew Cunningham, Andrew Ferrell, Matthew Lee, Tony Loogman

Mechanical Engineering

Monocoque development of the 2015 Cal Poly Formula SAE racecar from design to competition.


Kinetic Modeling Of Catalytic Aerogels, Yi Cao Jun 2015

Kinetic Modeling Of Catalytic Aerogels, Yi Cao

Honors Theses

As pollution becomes an increasing concern globally, strict regulations have been set on vehicle pollutant emissions. The three-way catalytic converter is capable of converting toxic emissions such as carbon monoxide, unburned hydrocarbons and nitrogen oxides to less hazardous waste such as carbon dioxide, water, and nitrogen. Current catalysts employ platinum group metals, which are expensive and environmentally damaging to mine. Catalytically-active aerogels such as Co-Al, Cu-Al and V-Al aerogels have shown promise as alternatives to these metals. The work presented here adapts and extends a global kinetic model which predicts the conversion of hydrocarbons and carbon monoxide on platinum catalyst …


Stitch Fiber Comparison For Improvement Of Interlaminar Fracture Toughness In Stitched Composites, Kwek Tan, N. Watanabe, Y. Iwahori Apr 2015

Stitch Fiber Comparison For Improvement Of Interlaminar Fracture Toughness In Stitched Composites, Kwek Tan, N. Watanabe, Y. Iwahori

Dr. Kwek-Tze Tan

In this study, strain energy release rates are measured and compared for laminated composites reinforced by through-thickness stitching using different stitch fiber materials — Carbon, Kevlar, and Vectran. Strain energy release rates are evaluated experimentally using the DCB test and validated computationally using FEA. The FE model of the stitched composite incorporates a novel four-step stitch fracture process, namely: interfacial debonding, slack absorption, fiber breakage, and pull-out friction. The FE predictions of GIC show good agreement with the experimental results. It is revealed that the relationship between G IC and stitch density, or stitch thread volume fraction for all …


Molecular Modeling Of Epon 862-Detda / Carbon Composites, Cameron Hadden Jan 2015

Molecular Modeling Of Epon 862-Detda / Carbon Composites, Cameron Hadden

Dissertations, Master's Theses and Master's Reports - Open

The thermoset epoxy resin EPON 862, coupled with the DETDA hardening agent, are utilized as the polymer matrix component in many graphite (carbon fiber) composites. Because it is difficult to experimentally characterize the interfacial region, computational molecular modeling is a necessary tool for understanding the influence of the interfacial molecular structure on bulk-level material properties. The purpose of this research is to investigate the many possible variables that may influence the interfacial structure and the effect they will have on the mechanical behavior of the bulk level composite. Molecular models are established for EPON 862-DETDA polymer in the presence of …