Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Additive Manufacturing

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Articles 1 - 5 of 5

Full-Text Articles in Mechanical Engineering

A Framework For Process Inspection Of Metal Additive Manufacturing, Chih-Kun Cheng, Frank W. Liou, Yi-Chien Cheng, Sheng-Chih Shen Feb 2019

A Framework For Process Inspection Of Metal Additive Manufacturing, Chih-Kun Cheng, Frank W. Liou, Yi-Chien Cheng, Sheng-Chih Shen

Mechanical and Aerospace Engineering Faculty Research & Creative Works

In this paper, we propose a process inspection framework for metal additive manufacturing (AM) processes. AM, also known as 3D printing, is the process of joining materials to make objects on the basis of 3D model data and is envisioned to play a strategic role in maintaining economic and scientific dominance. Different from conventional manufacturing methods, the AM process is a point-by-point and layer-by-layer manufacturing. Thus, there are many opportunities to generate a process error that can cause quality issues in an AM part. A systematic AM process inspection is needed to yield acceptable performance of the part. The critical …


Additive Manufacturing Of Metal Functionally Graded Materials: A Review, Yitao Chen, Frank W. Liou Aug 2018

Additive Manufacturing Of Metal Functionally Graded Materials: A Review, Yitao Chen, Frank W. Liou

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Functionally graded materials (FGMs) have attracted a lot of research interest due to their gradual variation in material properties that result from the non-homogeneous composition or structure. Metal FGMs have been widely researched in recent years, and additive manufacturing has become one of the most important approaches to fabricate metal FGMs. The aim of this paper is to review the research progress in metal FGMs by additive manufacturing. It will first introduce the unique properties and the advantages of FGMs. Then, typical recent findings in research and development of two major types of metal additive manufacturing methods, namely laser metal …


Design Of Lattice Structures With Graded Density Fabricated By Additive Manufacturing, Wenjin Tao, Yong Liu, Austin T. Sutton, Krishna C. R. Kolan, Ming-Chuan Leu Jul 2018

Design Of Lattice Structures With Graded Density Fabricated By Additive Manufacturing, Wenjin Tao, Yong Liu, Austin T. Sutton, Krishna C. R. Kolan, Ming-Chuan Leu

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Lattice structures fabricated by Additive Manufacturing (AM) processes are promising for many applications, such as lightweight structures and energy absorbers. However, predicting and controlling of their mechanical behaviors is challenging due to the complexity of modeling and the uncertainties exist in the manufacturing process. In this paper, we explore the possibilities enabled by controlling the local densities. A set of lattice structures with different density gradients are designed using an implicit isosurface equation, and they are manufactured by Selective Laser Melting (SLM) process with 304L stainless steel. Finite element analysis and compression test are used to evaluate their mechanical properties. …


Additive Manufacturing Of High Entropy Alloys -- A Review, Wenyuan Cui, Xinchang Zhang, Frank W. Liou Aug 2017

Additive Manufacturing Of High Entropy Alloys -- A Review, Wenyuan Cui, Xinchang Zhang, Frank W. Liou

Mechanical and Aerospace Engineering Faculty Research & Creative Works

High-entropy alloys have attracted increasingly interest due to their unique compositions, microstructures and mechanical properties. Additive manufacturing has been recognized as a promising technology to fabricate the high-entropy alloys in the recent years. The purpose of this paper is to review the current research progress in high-entropy alloys by additive manufacturing process. It will first highlight the important theory of the high-entropy alloys. The next aspect is to summarize current additive manufacturing methods applied for the high entropy alloys. At last, the correlation between the microstructures and the mechanical properties of the high-entropy alloys will be examined and discussed.


Experimental Investigation Of Effect Of Environment Temperature On Freeze-Form Extrusion Fabrication, Xiyue Zhao, Michael S. Mason, Tieshu Huang, Ming-Chuan Leu, Robert G. Landers, Greg Hilmas, Samuel J. Easley, Michael W. Hayes Aug 2007

Experimental Investigation Of Effect Of Environment Temperature On Freeze-Form Extrusion Fabrication, Xiyue Zhao, Michael S. Mason, Tieshu Huang, Ming-Chuan Leu, Robert G. Landers, Greg Hilmas, Samuel J. Easley, Michael W. Hayes

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Freeze-form Extrusion Fabrication (FEF) is an additive manufacturing technique that extrudes ceramic loaded aqueous pastes layer by layer below the paste freezing temperature for component fabrication. A computer controlled 3-D gantry system has been developed for the FEF process. The system includes a temperature control subsystem that allows for fabrication of components below the paste freezing temperature. The low temperature environment allows for larger component fabrication. Comparisons in terms of layer thickness, self-sustaining ability, and system response were performed between 0⁰C and -20⁰C for alumina sample fabrications. The minimum deposition angles without use of support material have been determined for …