Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 15 of 15

Full-Text Articles in Mechanical Engineering

Cobalt Chromium In Biomedical Applications And The Development Of A Pspp Map, Nouralhouda Jamal Dec 2023

Cobalt Chromium In Biomedical Applications And The Development Of A Pspp Map, Nouralhouda Jamal

Bagley College of Engineering Publications and Scholarship

During the world wars, Cobalt-Chromium (Co-Cr) alloys gained prominence for their use in aircraft engine components, where they exhibited high temperature strength and durability. They are used in a wide range of industries due to their unique set of qualities, particularly strength, corrosion resistance, and biocompatibility. They have emerged as versatile materials with a broad spectrum of applications, from aerospace and automotive components to biomedical implants.

This paper presents a thorough analysis of its composition, processing techniques, microstructure, mechanical properties, and performance characteristics. The primary goal of this project is to develop a PSPP (Process, structure, properties, and performance) map …


An Investigation Into The Challenges Of Contemporary Additive Manufacturing: Insights Into The Metallurgical Response Of Materials And Relevant Solution, Huan Ding Nov 2023

An Investigation Into The Challenges Of Contemporary Additive Manufacturing: Insights Into The Metallurgical Response Of Materials And Relevant Solution, Huan Ding

LSU Doctoral Dissertations

Additive Manufacturing (AM) has gained attention in recent years due to its unique capabilities in the fabrication of complex parts. As with any new research, there is still a lack of sufficient understanding in the field of additive manufacturing, and further investigation is needed to solve existing problems. Ultimately, the aim is to enable the widespread use of AM components across various industries.

Chapter One provides a brief introduction to the background and current bottlenecks of additive manufacturing technology. Chapter two focuses on the development of high-strength 7075 aluminum alloy (Al7075) for Fused Deposition Modeling and Sintering (FDMS) technology. Al7075 …


Development And Characterization Of Bound Metal Deposition Including Laser Ablation, Alexander J. Watson May 2022

Development And Characterization Of Bound Metal Deposition Including Laser Ablation, Alexander J. Watson

Electronic Theses and Dissertations

Bound Metal Deposition (BMD) is a novel metal additive manufacturing technology in which a metal powder-binder composite paste is layer-wise extruded to form a part, which is then debound and sintered into a solid metal part. Although promising, BMD suffers from shrinkage-induced warpage and an inability to produce fine length scale features. This research addresses these problems by: (1) characterizing warpage of planar parts, and (2) developing a novel laser ablated process to create fine length scale features. First, a 12-factor resolution IV fractional-factorial design of experiments (DOE) was conducted to determine the warpage of planar parts as a function …


Development Of Oxide Dispersion Strengthening (Ods) Alloys Powder For Additive Manufacturing, Changyu Ma Jan 2022

Development Of Oxide Dispersion Strengthening (Ods) Alloys Powder For Additive Manufacturing, Changyu Ma

Graduate Theses, Dissertations, and Problem Reports

Additive manufacturing (AM) fabricated oxide dispersion strengthened (ODS) alloys are given high expectations for critical structural components such as the first stage turbine blade for their excellent creep strength and oxidation resistance compared to superalloys. However, the powder feedstock processing is still an open question since current state-of-the-art processes are not capable of achieving ultrafine strengthening elements such as Y2O3 in powder which leads to agglomeration issues in as-consolidated alloys. In this research, the oxidation behavior and stability of ultrafine oxide in AM-printed alloys using mechanically alloyed powders were evaluated at 1100 oC. In addition, a …


A Study Of Reduced Activation Ferritic Martensitic Metal Core Wire For Wire Arc Additive Manufacturing, Alexander L. Reichenbach Jan 2022

A Study Of Reduced Activation Ferritic Martensitic Metal Core Wire For Wire Arc Additive Manufacturing, Alexander L. Reichenbach

Electronic Theses and Dissertations

This study seeks to determine the technical feasibility of fabricating reduced activation ferritic martensitic (RAFM) steel parts, using a wire arc additive manufacturing (WAAM) process. The WAAM process, manufactures a part by depositing layers of metal onto a substrate to build a large scale near net shape part. RAFM alloy steels are next generation steels designed to resist radiation effects in the radiation intense working environments, such as nuclear reactors. To achieve this, process development and testing to design the WAAM production process with the custom RAFM filler wire was carried out. Several welding waveform modes were tested, and it …


Assessing Mechanical Performance Of Dissimilar Steel Systems Made Via Wire-Arc Additive Manufacturing, Obed Daniel Acevedo Dec 2021

Assessing Mechanical Performance Of Dissimilar Steel Systems Made Via Wire-Arc Additive Manufacturing, Obed Daniel Acevedo

Masters Theses

Hot stamping is part of a specific type of metalworking procedure widely used in the automotive industry. This research seeks to help make hot stamp tooling component production more cost-effective by using large-scale additive manufacturing. Additive manufacturing can produce dissimilar steel components that can be more cost-effective and time-efficient and allow for complex geometries to be made. A dissimilar steel system consisting of 410 martensitic stainless steel and AWS ER70S-6 mild steel is proposed to make hot stamps, making them more cost-efficient. However, the material interface's mechanical behavior in 410SS-mild steel additively manufactured material systems is not well understood. This …


Laser Surface Treatment And Laser Powder Bed Fusion Additive Manufacturing Study Using Custom Designed 3d Printer And The Application Of Machine Learning In Materials Science, Hao Wen Aug 2021

Laser Surface Treatment And Laser Powder Bed Fusion Additive Manufacturing Study Using Custom Designed 3d Printer And The Application Of Machine Learning In Materials Science, Hao Wen

LSU Doctoral Dissertations

Selective Laser Melting (SLM) is a laser powder bed fusion (L-PBF) based additive manufacturing (AM) method, which uses a laser beam to melt the selected areas of the metal powder bed. A customized SLM 3D printer that can handle a small quantity of metal powders was built in the lab to achieve versatile research purposes. The hardware design, electrical diagrams, and software functions are introduced in Chapter 2. Several laser surface engineering and SLM experiments were conducted using this customized machine which showed the functionality of the machine and some prospective fields that this machine can be utilized. Chapter 3 …


Transients In Plastic Instabilities During Thermo-Mechanical Reversals In An Additively Manufactured Ti6al4v, Sabina C. Kumar Aug 2021

Transients In Plastic Instabilities During Thermo-Mechanical Reversals In An Additively Manufactured Ti6al4v, Sabina C. Kumar

Doctoral Dissertations

A complex interaction of process variables in an evolving geometry during Additive Manufacturing (AM), can bring about spatial and temporal transients of temperature and stress within each layer in a part. Although AM shares commonalities with conventional processing techniques such as casting, welding, and thermo-mechanical process, published literature has shown that the steady-state conditions are not strictly valid during AM process. Macro-scale fluctuations of thermal gradients (dT/dx: 103 to 107 K/m) combined with local changes in thermal expansion coefficients, crystallographic strains and localized stress-strain constitutive properties in conjunction with thermal cycles, can bring about a plastic strain gradient …


Fabricating Tinicu Ternary Shape Memory Alloy By Directed Energy Deposition Via Elemental Metal Powders, Yitao Chen, Xinchang Zhang, Mohammad Masud Parvez, Joseph William Newkirk, Frank W. Liou Jun 2021

Fabricating Tinicu Ternary Shape Memory Alloy By Directed Energy Deposition Via Elemental Metal Powders, Yitao Chen, Xinchang Zhang, Mohammad Masud Parvez, Joseph William Newkirk, Frank W. Liou

Materials Science and Engineering Faculty Research & Creative Works

In this paper, a TiNiCu shape memory alloy single-wall structure was fabricated by the directed energy deposition technique with a mixture of elemental Ti, Ni, and Cu powders following the atomic percentage of Ti50Ni45Cu5 to fully utilize the material flexibility of the additive manufacturing process to develop ternary shape memory alloys. The chemical composition, phase, and material properties at multiple locations along the build direction were studied, using scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction, Vickers hardness test-ing, tensile testing, and differential scanning calorimetry. The location-dependent compositions of martensitic TiNi and austenitic TiNi phases, mechanical properties, and functional properties …


Absorption Of Nitrogen During Pulsed Wave L-Pbf Of 17-4 Ph Steel, Ben Brown, Joseph William Newkirk, Frank W. Liou Feb 2021

Absorption Of Nitrogen During Pulsed Wave L-Pbf Of 17-4 Ph Steel, Ben Brown, Joseph William Newkirk, Frank W. Liou

Materials Science and Engineering Faculty Research & Creative Works

In the fabrication of 17-4 PH by laser powder bed fusion (L-PBF) the well-documented occurrence of large amounts of retained austenite can be attributed to an elevated concentration of nitrogen present in the material. While the effects of continuous wave (CW) laser processing on in-situ nitrogen absorption characteristics have been evaluated, power modulated pulsed wave (PW) laser processing effects have not. In this study the effects of PW L-PBF processing of 17-4 PH on nitrogen absorption, phase composition, and mechanical performance are explored using commercially available PW L-PBF equipment and compared to samples produced by CW L-PBF. PW L-PBF samples …


Process Parameter Development Of Additively Manufactured Af9628 Weapons Steel, Erin M. Hager Mar 2019

Process Parameter Development Of Additively Manufactured Af9628 Weapons Steel, Erin M. Hager

Theses and Dissertations

The manufacture of components in Additive Manufacturing processes is limited by the range of materials available. Qualification of materials for Additive Manufacturing is time intensive, and is often specific to a single type of machine. In this study, an approach to selecting power, speed, and hatch spacing values for a newly powderized material, AF9628 weapons steel, is described that results in highly dense (>99.9%) parts on an MLab 200R Cusing. Initial power and speed values used in a weld track study were selected based on a survey of parameters used on similar materials, with a focus on the energy …


Investigation Of 2195 And 2219 Post Weld Heat Treatments For Additive Friction Stir Lap Welds, Matthew Champagne Dec 2017

Investigation Of 2195 And 2219 Post Weld Heat Treatments For Additive Friction Stir Lap Welds, Matthew Champagne

University of New Orleans Theses and Dissertations

To evaluate potential uses for friction stir welding in additive manufacturing, two separate parts were fabricated, one of 2195-T84 and the other 2219-T87, utilizing fixed pin techniques and additive lap welds. The parts were cut into samples, artificially aged and subjected to Rockwell hardness (HRB), Vickers hardness, micrographic photography, and metallographic imaging on both pre- and post- heat treatment. Additionally, tensile testing was performed on the heat-treated samples. A comparisons of test results showed a minimal increase in the yield strength of the 2195-T84 samples compared to as-welded tensile results obtained from a previous project. The ultimate tensile strength was …


Effect Of Composition And Build Direction On Additively Manufactured Hastelloy X Alloys, Justin A. Spitzer, Jeffrey T. Schloetter, Sarah Zerga Jun 2017

Effect Of Composition And Build Direction On Additively Manufactured Hastelloy X Alloys, Justin A. Spitzer, Jeffrey T. Schloetter, Sarah Zerga

Materials Engineering

Microcracking has caused premature failure and reduction in properties in additively manufactured (AM) Hastelloy X. The purpose of this research is to meet or exceed the mechanical properties of wrought Hastelloy X by modifying the composition and build direction of Hastelloy X manufactured using Direct Metal Deposition (DMD). Tensile testing, scanning electron microscopy (SEM), and metallography were performed on the samples. ANOVA was used to analyze the dependence that the properties had on build direction and composition. The nominal composition wrought samples had a yield strength of 310.1 MPa and a 60.79% Elongation. Alloy P60-X18 in a horizontal build had …


Shape Memory Behavior Of Dense And Porous Niti Alloys Fabricated By Selective Laser Melting, Soheil Saedi Jan 2017

Shape Memory Behavior Of Dense And Porous Niti Alloys Fabricated By Selective Laser Melting, Soheil Saedi

Theses and Dissertations--Mechanical Engineering

Selective Laser Melting (SLM) of Additive Manufacturing is an attractive fabrication method that employs CAD data to selectively melt the metal powder layer by layer via a laser beam and produce a 3D part. This method not only opens a new window in overcoming traditional NiTi fabrication problems but also for producing porous or complex shaped structures. The combination of SLM fabrication advantages with the unique properties of NiTi alloys, such as shape memory effect, superelasticity, high ductility, work output, corrosion, biocompatibility, etc. makes SLM NiTi alloys extremely promising for numerous applications.

The SLM process parameters such as laser power, …


Metals Additive Manufacturing Powder Aging Characterization, Thomas Russell Lovejoy, Nicholas Karl Muetterties, David Takeo Otsu Jun 2016

Metals Additive Manufacturing Powder Aging Characterization, Thomas Russell Lovejoy, Nicholas Karl Muetterties, David Takeo Otsu

Mechanical Engineering

The metallic additive manufacturing process known as selective laser melting requires highly spherical, normally distributed powder with diameters in the range of 10 to 50 microns. Previous observations have shown a degradation in powder quality over time, resulting in unwanted characteristics in the final printed parts. 21-6-9 stainless steel powder was used to fabricate test parts, with leftover powder recycled back into the machine. Powder samples and test specimens were characterized to observe changes across build cycles. Few changes were observed in the physical and mechanical properties of the specimens, however, there were indications of chemical changes across cycles. Potential …