Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Acoustics

Discipline
Institution
Publication Year
Publication
Publication Type

Articles 1 - 30 of 64

Full-Text Articles in Mechanical Engineering

Comparison Of Conventional And Adaptive Acoustic Beamforming Algorithms Using A Tetrahedral Microphone Array In Noisy Environments, Megan Brittany Ewers Mar 2024

Comparison Of Conventional And Adaptive Acoustic Beamforming Algorithms Using A Tetrahedral Microphone Array In Noisy Environments, Megan Brittany Ewers

Dissertations and Theses

In situ acoustic measurements are often plagued by interfering sound sources that occur within the measurement environment. Both adaptive and conventional beamforming algorithms, when applied to the outputs of a microphone array arranged in a tetrahedral geometry, are able to capture sound sources in desired directions and reject sound from unwanted directions. Adaptive algorithms may be able to measure a desired sound source with greater spatial precision, but require more calculations and, therefore, computational power. A conventional frequency-domain phase-shift algorithm and a modified adaptive frequency-domain Minimum Variance Distortionless Response (MVDR) algorithm were applied to simulated and recorded signals from a …


Thermoacoustic Refrigerator, Rees Phillip Verleur, Colleen Farrell Mccandless, Anders Matthew Bjork, Yashraj Ashwinkumar Solanki Jun 2023

Thermoacoustic Refrigerator, Rees Phillip Verleur, Colleen Farrell Mccandless, Anders Matthew Bjork, Yashraj Ashwinkumar Solanki

Mechanical Engineering

In the Thermoacoustic Refrigerator Cal Poly Mechanical Engineering senior project, we designed, built, and tested a thermoacoustic refrigeration system which achieved an average temperature difference of 11.0°C. Our system consists of a resonator tube with an instrumented stack, mounted onto a base with a speaker and amplifier. An external power supply and function generator provide the power and signal to the system, and a thermocouple reader displays the temperature of the top and bottom of the stack. The system consistently achieved a significant temperature difference between the two ends of the stack in various ambient conditions, and it was quick …


Jet Engine Emissions And Vapor Contrail Reduction Through Increased Combustion Efficiency With The Aim To Mitigate Greenhouse Gases Emissions, Austin J. Brant Apr 2022

Jet Engine Emissions And Vapor Contrail Reduction Through Increased Combustion Efficiency With The Aim To Mitigate Greenhouse Gases Emissions, Austin J. Brant

Honors College Theses

As society continues to globalize and advance in complexity, the increased demand for business aviation has caused the global travel rate of airlines to increase with each year. With this continual increase in aviation travel, the Federal Aviation Administration (FAA) predicts that the fuel consumption rate is to increase by 1.6 percent as of the year 2025. While this increase in fuel consumption is a positive trait of a thriving aviation community, concerns also arise regarding increased greenhouse gas emissions and enlarged contributions to the greenhouse effect. The most prevalent greenhouse gases associated with jet engine emissions are water vapor, …


Characterization Of Hydraulic Flow Noise Induced By Spool Valves, Carter A. Paprocki Jan 2022

Characterization Of Hydraulic Flow Noise Induced By Spool Valves, Carter A. Paprocki

Dissertations, Master's Theses and Master's Reports

The purpose of the hydraulic flow noise research was to investigate the relationship between operational valve parameters and flow noise generation. The primary consideration was correlating the flow noise generated by the valve with the distinct valve open positions. This data would allow future valve designs to account for features that cause increased flow noise and move those features away from high flow valve displacements. By implementing this, companies would be able to design quieter hydraulic systems that will not expose operators to the current levels of sound found on machines. The experiments were conducted using two valves with different …


Potential Improvements For Underwater Sound Speed Measurement Devices, Matthieu Bernier May 2021

Potential Improvements For Underwater Sound Speed Measurement Devices, Matthieu Bernier

Honors Scholar Theses

Modern sonar systems rely on fast and accurate measurements of the speed of sound in water. Plenty of measurement devices currently exist which are used to gather sound speed measurements in water. They specifically require accurate temperature measurements, as temperature is the most influential factor which affects sound wave speed. Previous research on sound speed properties, a few different examples of sound speed measurement devices, and examples of different types of temperature measurement devices was used along with new research on salinity equations and properties of sound, ocean water, and various existing measurement devices to suggest possible improvements for sound …


A Dynamic Active Noise Control System For Live Music Attenuation, Elliot James Krueger Jan 2021

A Dynamic Active Noise Control System For Live Music Attenuation, Elliot James Krueger

Graduate Research Theses & Dissertations

This thesis proposes a system design that will be suitable for applying active noise control (ANC) effectively to live musical instruments. The design consists of three parts: a signal separation section, an instrument classification section, and the active noise control section. The signal separation section will split up the music signals. The instrument classification section will identify the signals, and the ANC section will attenuate the music signal based on the previous information from the other sections. The two instruments of focus will be the trombone and tuba for their low frequency and ability to be quite loud in a …


Non-Equilibrium Behavior Of Large-Scale Axial Vortex Cores, Robert L. Ash, Irfan R. Zardadkhan Jan 2021

Non-Equilibrium Behavior Of Large-Scale Axial Vortex Cores, Robert L. Ash, Irfan R. Zardadkhan

Mechanical & Aerospace Engineering Faculty Publications

A logical basis for incorporating pressure non-equilibrium and turbulent eddy viscosity in an incompressible vortex model is presented. The infrasonic acoustic source implied in our earlier work has been examined. Finally, this non-equilibrium turbulent vortex core is shown to dissipate mechanical energy more slowly than a Burgers vortex, helping us to explain the persistence of axial vortices in nature. Recent molecular dynamics simulations replicate aspects of this non-equilibrium pressure behavior.


Estimating The Inner Ring Defect Size And Residual Service Life Of Freight Railcar Bearings Using Vibration Signatures, Jennifer Lima, Constantine Tarawneh, Jesse Aguilera, Jonas Cuanang Jul 2020

Estimating The Inner Ring Defect Size And Residual Service Life Of Freight Railcar Bearings Using Vibration Signatures, Jennifer Lima, Constantine Tarawneh, Jesse Aguilera, Jonas Cuanang

Mechanical Engineering Faculty Publications and Presentations

There are currently two primary wayside detection systems for monitoring the health of freight railcar bearings in the railroad industry: The Trackside Acoustic Detection System (TADS™) and the wayside Hot-Box Detector (HBD). TADS™ uses wayside microphones to detect and alert the train operator of high-risk defects. However, many defective bearings may never be detected by TADS™ since a high-risk defect is a spall which spans about 90% of a bearing’s raceway, and there are less than 30 systems in operation throughout the United States and Canada. HBDs sit on the side of the rail-tracks and use non-contact infrared sensors to …


Optimization Of Railroad Bearing Health Monitoring System For Wireless Utilization, Jonas Cuanang, Constantine Tarawneh, Martin Amaro Jr., Jennifer Lima, Heinrich D. Foltz Jul 2020

Optimization Of Railroad Bearing Health Monitoring System For Wireless Utilization, Jonas Cuanang, Constantine Tarawneh, Martin Amaro Jr., Jennifer Lima, Heinrich D. Foltz

Mechanical Engineering Faculty Publications and Presentations

In the railroad industry, systematic health inspections of freight railcar bearings are required. Bearings are subjected to high loads and run at high speeds, so over time the bearings may develop a defect that can potentially cause a derailment if left in service operation. Current bearing condition monitoring systems include Hot-Box Detectors (HBDs) and Trackside Acoustic Detection Systems (TADS™). The commonly used HBDs use non-contact infrared sensors to detect abnormal temperatures of bearings as they pass over the detector. Bearing temperatures that are about 94°C above ambient conditions will trigger an alarm indicating that the bearing must be removed from …


A Study Of The Aeroacoustics Of Swept Propellers For Small Unmanned Aerial Vehicles, Arthur David Wiedemann Apr 2020

A Study Of The Aeroacoustics Of Swept Propellers For Small Unmanned Aerial Vehicles, Arthur David Wiedemann

Mechanical & Aerospace Engineering Theses & Dissertations

In recent years, small unmanned aerial vehicles (UAVs) have increased in availability and use in both public and commercial sectors. This increased use of small UAVs or “drones” has the unfortunate consequence of introducing excessive noise into communities where they operate. Implementation of noise reduction methods is necessary if we wish to see expanded use of drones in public areas. With electric propulsion, the primary source of noise is the rotor/propeller used in contemporary multi-rotor configurations. In this thesis, the aerodynamics and acoustic behavior of various swept propellers is examined with computational and experimental methods.

A family of propeller geometries …


Maximizing Bass Reflex System Performance Through Optimization Of Port Geometry, Bryce Doll Jan 2020

Maximizing Bass Reflex System Performance Through Optimization Of Port Geometry, Bryce Doll

Honors Undergraduate Theses

A bass-reflex system is a type of loudspeaker design that uses a port or a vent to improve low-frequency performance. The port acts as a Helmholtz resonator which extends the bass response of the system. However, at high drive levels, the air inside the port can become turbulent and cause distortion, noise, and compression. From previous works, it is known that the geometry of the port plays a crucial role in reducing these unwanted effects. This paper serves to provide more insight into optimal port shape by performing several objective tests on a group of 5 different prototype port shapes …


Acoustic Design Optimization With Isogeometric Analysis And Differential Evolution, Garrett W. Dodgen Dec 2019

Acoustic Design Optimization With Isogeometric Analysis And Differential Evolution, Garrett W. Dodgen

Mechanical Engineering Theses

The objective of this study is to utilize shape optimization to enhance the performance of devices relying on acoustic wave propagation. Particularly, the shape of a horn speaker and an acoustic energy harvester were optimized to enhance their performance at targeted frequencies. High order Isogeometric Analysis (IGA) was performed to estimate the acoustic pressure with minimum geometry and pollution errors [1]. The analysis platform was then combined with Differential Evolution (DE) to optimize the geometry of the horn speaker and energy harvester at a given frequency. These cases effectively demonstrate two applications of Isogeomtric shape optimization for devices relying on …


Extending The Bandwidth Of Intensity-Based Sound Power Estimates, Michael C. Mortenson Oct 2019

Extending The Bandwidth Of Intensity-Based Sound Power Estimates, Michael C. Mortenson

Undergraduate Honors Theses

Sound power is often measured using the intensity-based engineering standard ANSI S12.12-1992:R2017. Traditional methods for intensity-based sound power estimation are limited in bandwidth at low frequencies by phase mismatch between microphones and at high frequencies by microphone spacing—with errors occurring well below the spatial Nyquist frequency. The Phase and Amplitude Gradient Estimation (PAGE) method has been used to extend the bandwidth of intensity calculations [1]. This thesis examines the efficacy of the PAGE method in overcoming bandwidth limitations in estimating sound power. Specifically, the sound fields from three sources—a blender, vacuum cleaner, and reference sound source—were measured according to ANSI …


Estimating The Outer Ring Defect Size And Remaining Service Life Of Freight Railcar Bearings Using Vibration Signatures, Joseph Montalvo, Constantine Tarawneh, Jennifer Lima, Jonas Cuanang, Nancy De Los Santos Jul 2019

Estimating The Outer Ring Defect Size And Remaining Service Life Of Freight Railcar Bearings Using Vibration Signatures, Joseph Montalvo, Constantine Tarawneh, Jennifer Lima, Jonas Cuanang, Nancy De Los Santos

Mechanical Engineering Faculty Publications and Presentations

The railroad industry currently utilizes two wayside detection systems to monitor the health of freight railcar bearings in service: The Trackside Acoustic Detection System (TADS™) and the wayside Hot-Box Detector (HBD). TADS™ uses wayside microphones to detect and alert the conductor of high-risk defects. Many defective bearings may never be detected by TADS™ since a high-risk defect is a spall which spans more than 90% of a bearing’s raceway, and there are less than 20 systems in operation throughout the United States and Canada. Much like the TADS™, the HBD is a device that sits on the side of the …


Less-Than-Lethal Self Defense Device With An Acoustic Element, Anthony Taibi Apr 2019

Less-Than-Lethal Self Defense Device With An Acoustic Element, Anthony Taibi

KSU Journey Honors College Capstones and Theses

This creative capstone project involves the conception, design, and creation of a less-than-lethal self defense device with an integrated sound board to control the acoustic element. Theoretically, this device is capable of deterring potential threats without causing any serious harm or any long-term damage. When starting this project, I was very focused on sonic warfare, and how to harness the power of ultrasonic and infrasonic sound waves to subdue to target; however, I concluded that using resonant frequencies to deter a human being is too dangerous, expensive, and can have negative effects for the user of the device if used …


Comparative Study And Design Of Economical Sound Intensity Probe, Karan Gundre Jan 2019

Comparative Study And Design Of Economical Sound Intensity Probe, Karan Gundre

Dissertations, Master's Theses and Master's Reports

The theory of sound intensity measurement using the two-microphone method was first developed in the late 1970s. Even though the measurements were limited by the technology of the time, the theory was straight-forward and considerable attention was given to improving precision during testing or post-processing. With the development of modern equipment, however, the focus shifted to the apparatus. The commercial intensity probes available today have microphones that are already phase-matched. This eliminates the need for correction during or post-testing as a majority of the errors are minimized before any data is even collected. Although such intensity probes facilitate taking precise …


Vibration-Based Defect Detection For Freight Railcar Tapered-Roller Bearings, Joseph Montalvo, Constantine Tarawneh, Arturo A. Fuentes Jun 2018

Vibration-Based Defect Detection For Freight Railcar Tapered-Roller Bearings, Joseph Montalvo, Constantine Tarawneh, Arturo A. Fuentes

Mechanical Engineering Faculty Publications and Presentations

The railroad industry currently utilizes two wayside detection systems to monitor the health of freight railcar bearings in service: The Trackside Acoustic Detection System (TADS™) and the wayside Hot-Box Detector (HBD). TADS™ uses wayside microphones to detect and alert the conductor of high risk defects. Many defective bearings may never be detected by TADS™ due to the fact that a high risk defect is considered a spall which spans more than 90% of a bearing’s raceway, and there are less than 20 systems in operation throughout the United States and Canada. Much like the TADS™, the HBD is a device …


Vector Acoustic Intensity Around A Tuning Fork, Daniel A. Russell, Justin Junell, Daniel O. Ludwigsen May 2017

Vector Acoustic Intensity Around A Tuning Fork, Daniel A. Russell, Justin Junell, Daniel O. Ludwigsen

Daniel Ludwigsen

The acoustic intensity vector field around a tuning fork is investigated. Theory for a longitudinal quadrupole source predicts a well-defined transition between near-field and far-field, with significant circulation of sound energy in the near-field. Vector components of the time-averaged intensity were measured using a two-microphone intensity probe and found to agree well with predictions from theory. The vector intensity map is interpreted, and shown to provide useful information about the near-field of an acoustic source.


Better Understanding Of Resonance Through Modeling And Visualization, Daniel O. Ludwigsen, Cayla Jewett, Matthew Jusczcyk May 2017

Better Understanding Of Resonance Through Modeling And Visualization, Daniel O. Ludwigsen, Cayla Jewett, Matthew Jusczcyk

Daniel Ludwigsen

Students encounter cavity resonance and waveguide phenomena in acoustics courses and texts, where the study is usually limited to cases with simple geometries: parallelepipeds, cylinders, and spheres. Long-wavelength approximations help with situations of more complexity, as in the classic Helmholtz resonator. At Kettering University, we are beginning to employ finite element modeling in our acoustics classes to help undergraduates better understand the acoustic modes of actual structures. This approach to the time-independent wave equation (the Helmholtz equation) was first used in a research and measurements class to investigate two classic resonance problems. The first problem was a study of resonance …


Acoustic Testing And Modeling: An Advanced Undergraduate Laboratory, Daniel A. Russell, Daniel O. Ludwigsen May 2017

Acoustic Testing And Modeling: An Advanced Undergraduate Laboratory, Daniel A. Russell, Daniel O. Ludwigsen

Daniel Ludwigsen

This paper describes an advanced laboratory course in acoustics, specifically targeted for students with an interest in engineering applications at a school with a strongly integrated industrial co-op program. The laboratory course is developed around a three-pronged approach to problem solving that combines and integrates theoretical models, computational models, and experimental data. The course is structured around modules that begin with fundamental concepts and build laboratory skills and expand the knowledge base toward a final project. Students keep a detailed laboratory notebook, write research papers in teams, and must pass laboratory certification exams. This paper describes the course layout and …


Optimization Of Acoustic Soundboard Through Modal Analysis And Material Selection, Noah C. Nicholas, Cody Gruber, Nicholas Hartman Jan 2017

Optimization Of Acoustic Soundboard Through Modal Analysis And Material Selection, Noah C. Nicholas, Cody Gruber, Nicholas Hartman

Williams Honors College, Honors Research Projects

The purpose of this design project was to determine if it is plausible to design an acoustic top plate assembly made of a non-traditional material which is equivalent in sound quality to that of a standard wooden guitar. Since wood must be crafted by skilled luthiers, the overall cost of producing the completed product is fairly high. To reduce the cost of a finished acoustic guitar, we proposed to alter the material to that of one that is easier to manufacture, such as plastics and composites.

Based on our research, our team chose to test both ABS plastic and carbon …


Energy Localization And Heat Generation In Composite Energetic Systems Under High-Frequency Mechanical Excitation, Jesus O. Mares Dec 2016

Energy Localization And Heat Generation In Composite Energetic Systems Under High-Frequency Mechanical Excitation, Jesus O. Mares

Open Access Dissertations

In this work, the ability to use high frequency mechanical excitation to generate significant heating within plastic bonded explosives, as well as single energetic particles embedded within a viscoelastic binder, is studied. In this work, the fundamental mechanisms associated with the conversion of high-frequency mechanical excitation to heat as applied to these composite energetic systems are thoroughly investigated.

High-frequency contact excitation has been used to generate a significant amount of heat within samples of PBX 9501 and representative inert mock materials. Surface temperature rises on the order of 10 °C were observed at certain frequencies over a range from 50 …


Development Of Data Analytics Tools For Acoustic Measurement Of Positive Displacement Machines, Dan Ding, Monika Ivantysynova, Paul Kalbfleisch Aug 2016

Development Of Data Analytics Tools For Acoustic Measurement Of Positive Displacement Machines, Dan Ding, Monika Ivantysynova, Paul Kalbfleisch

The Summer Undergraduate Research Fellowship (SURF) Symposium

Noise control is an important factor in evaluating the design of positive displacement machines. This research project aims to develop new tools in MATLAB, with emphasis on visual approaches, to comprehensively characterize the noise generated by positive displacement machines in spatial, temporal and frequency domains. Sound pressure level (SPL), sound intensity level (SIL) and loudness were calculated and plotted on a measurement surface surrounding the pump, which illustrates the spatial distribution of the sound field. In order to highlight the phenomenon within specific frequency bands, Butterworth filters were used to isolate desired frequencies, such that specific harmonic content or 1/3 …


The Effect Of Honeycomb Cavity: Acoustic Performance Of A Double-Leaf Micro Perforated Panel, Yuxian Huang, Kai Ming Li Aug 2016

The Effect Of Honeycomb Cavity: Acoustic Performance Of A Double-Leaf Micro Perforated Panel, Yuxian Huang, Kai Ming Li

The Summer Undergraduate Research Fellowship (SURF) Symposium

A micro perforated panel (MPP) is a device consisting of a thin plate and submillimeter perforations for reducing low frequency noise. MPPs have many advantages compared to traditional sound absorption materials, such as durability and designability, and they can be used in a variety of places such as room interior designs, passenger and crew compartments of aircrafts and combustion engines. The models in this study were designed and fabricated with the latest 3-D printing technology. The transmission loss and sound absorption coefficient of the 3-D printed double-leaf MPPs with honeycomb cavities were studied. According to the established theory, MPPs work …


Development Of The Compact Jet Engine Simulator From Concept To Useful Test Rig, Henry H. Haskin Jul 2016

Development Of The Compact Jet Engine Simulator From Concept To Useful Test Rig, Henry H. Haskin

Mechanical & Aerospace Engineering Theses & Dissertations

Two Compact Jet Engine Simulator (CJES) units were designed for integrated wind tunnel acoustic experiments involving a Hybrid Wing Body (HWB) vehicle. To meet the 5.8% scale of the HWB model, Ultra Compact Combustor technology from the Air Force Research Laboratory was used. The CJES units were built and integrated with a control system in the NASA Langley Low Speed Aero acoustic Wind Tunnel. The combustor liners, plug—vane and flow conditioner components were built in-house at Langley Research Center. The operation of the CJES units was mapped and fixes found for combustor instability tones and rig flow noise. The original …


Design And Optimization Of Membrane-Type Acoustic Metamaterials, Matthew G. Blevins May 2016

Design And Optimization Of Membrane-Type Acoustic Metamaterials, Matthew G. Blevins

Durham School of Architectural Engineering and Construction: Dissertations, Thesis, and Student Research

One of the most common problems in noise control is the attenuation of low frequency noise. Typical solutions require barriers with high density and/or thickness. Membrane-type acoustic metamaterials are a novel type of engineered material capable of high low-frequency transmission loss despite their small thickness and light weight. These materials are ideally suited to applications with strict size and weight limitations such as aircraft, automobiles, and buildings. The transmission loss profile can be manipulated by changing the micro-level substructure, stacking multiple unit cells, or by creating multi-celled arrays. To date, analysis has focused primarily on experimental studies in plane-wave tubes …


Improved Sensitivity Mems Cantilever Sensor For Terahertz Photoacoustic Spectroscopy, Ronald A. Coutu Jr., Ivan R. Medvedev, Douglas T. Petkie Feb 2016

Improved Sensitivity Mems Cantilever Sensor For Terahertz Photoacoustic Spectroscopy, Ronald A. Coutu Jr., Ivan R. Medvedev, Douglas T. Petkie

Faculty Publications

In this paper, a microelectromechanical system (MEMS) cantilever sensor was designed, modeled and fabricated to measure the terahertz (THz) radiation induced photoacoustic (PA) response of gases under low vacuum conditions. This work vastly improves cantilever sensitivity over previous efforts, by reducing internal beam stresses, minimizing out of plane beam curvature and optimizing beam damping. In addition, fabrication yield was improved by approximately 50% by filleting the cantilever’s anchor and free end to help reduce high stress areas that occurred during device fabrication and processing. All of the cantilever sensors were fabricated using silicon-on-insulator (SOI) wafers and tested in a custom …


Evaluation Of Angular Distribution Of Incident Field At The Transmission Loss Window In Michigan Tech’S Reverberant Chamber, Abhishek Thyagarajan Jan 2016

Evaluation Of Angular Distribution Of Incident Field At The Transmission Loss Window In Michigan Tech’S Reverberant Chamber, Abhishek Thyagarajan

Dissertations, Master's Theses and Master's Reports

Transmission Loss prediction accuracy is highly dependent on a good understanding of the angular distribution of incident field on the panel. Traditionally, the incident field has been assumed to be either completely random (equal probability of incidence at all angles from 0° - 90°) or field incidence (where the field is assumed to be completely diffuse between 0° - 78°). Studies1-3 have shown that these models are not completely representative of the incident field. This incident field is studied in the Michigan Tech Transmission Loss suite using two different methods in this study; beamforming and acoustic intensity. The beamforming method …


Analysis Of Vibroacoustic Properties Of Dimpled Beams Using A Boundary Value Model, Kyle R. Myers Jun 2015

Analysis Of Vibroacoustic Properties Of Dimpled Beams Using A Boundary Value Model, Kyle R. Myers

Dissertations

Attention has been given recently to the use of dimples as a means of passively altering the vibroacoustic properties of structures. Because of their geometric complexity, previous studies have modeled dimpled structures using the finite element method. However, the dynamics of dimpled structures are not completely understood. The goal of this study is to provide a better understanding of these structures through the development of a boundary value model (BVM) using Hamilton's Variational Principle. The focus of this study is on dimpled beams, which represent the simplest form of a dimpled structure.

A general model of a beam with N …


The Icon Horn Loudspeaker, Vincent Phan Nov 2014

The Icon Horn Loudspeaker, Vincent Phan

Mechanical Engineering

A horn loudspeaker in layperson terms is essentially taking a megaphone and integrating it into a standard speaker. Similar to a cheerleader yelling into a megaphone, the horn loudspeaker will amplify the sound from the speaker with no additional power needed. Using standard speaker horn theory, the geometry of the “megaphone” can be engineered to tune the acoustic performance tailored to loudness and/or specific acoustics frequencies. The horn contours are similar to traditional orchestra instruments such as the French horn, trumpet, and tuba. The iconic beauty of a horn married with the quantitative engineering theory creates an aesthetic yet functional …