Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 16 of 16

Full-Text Articles in Mechanical Engineering

Third-Eye, Aaron Fassler Dec 2019

Third-Eye, Aaron Fassler

Undergraduate Honors Capstone Projects

The Third-Eye Device is a peripheral device compatible with any firearm equipped with the Picatinny rail system. Its system of a camera attached to the weapon which connects to an eyepiece allows the user to aim the weapon without aiming down the sights. This device is potentially crucial to those who regularly engage in close-quarters combat such as police and military specialists, whose ability to quickly and accurately clear rooms during operations is critical to their safety and the safety of others. The student team was tasked with improving the device, primarily in its survivability in dusty and wet environments, …


Rapid Prediction Of Low-Boom And Aerodynamic Performance Of Supersonic Transport Aircraft Using Panel Methods, Ted N. Giblette Dec 2019

Rapid Prediction Of Low-Boom And Aerodynamic Performance Of Supersonic Transport Aircraft Using Panel Methods, Ted N. Giblette

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

The Utah State University Aerolab developed and tested a set of tools for rapid prediction of the loudness of a sonic boom generated by supersonic transport aircraft. This work supported a larger effort led by Texas A&M to investigate the use of adaptive aerostructures in lowering sonic boom loudness at off design conditions. Successful completion of this effort will improve the feasibility of supersonic commercial transport over land.

Funding was provided by a NASA University Leadership Initiative grant to several universities, including Utah State University, as well as industry partners to complete this work over a five year period. The …


Experimental Investigation Of N2o/O2 Mixtures As Volumetrically Efficient Oxidizers For Small Spacecraft Hybrid Propulsion Systems, Rob L. Stoddard Dec 2019

Experimental Investigation Of N2o/O2 Mixtures As Volumetrically Efficient Oxidizers For Small Spacecraft Hybrid Propulsion Systems, Rob L. Stoddard

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

A hybrid thruster system utilizes propellants in two different stages, traditionally a solid fuel and a gaseous or liquid oxidizer. Recently hybrid thrusters have become a popular topic of research due to the high demand of a ”green” replacement for hydrazine. Not only are hybrid thruster systems typically much safer than hydrazine, but they are also a low-cost system with a high reliability in performance. The Propulsion Research Laboratory (PRL) at Utah State University (USU) has developed a hybrid thruster system using 3-D printed acrylonitrile butadiene styrene (ABS) as the fuel and gaseous oxygen (GOX) as the oxidizer. This system …


Experimental Characterization Of Thermal-Hydraulic Performance Of A Microchannel Heat Exchanger For Waste Heat Recovery, James Yih, Hailei Wang Nov 2019

Experimental Characterization Of Thermal-Hydraulic Performance Of A Microchannel Heat Exchanger For Waste Heat Recovery, James Yih, Hailei Wang

Mechanical and Aerospace Engineering Faculty Publications

Given size and performance advantages, microchannel heat exchangers are becoming increasingly important for various energy recovery and conversion processes. In this study, detailed experimental measurements were conducted to characterize flow and heat transfer performance of a microchannel heat recovery unit (HRU) manufactured using standard photochemical etching and diffusion bonding processes. According to the global flow and temperature measurement, the HRU has delivered the predicted thermal performance under various oil and air flow rates. As expected, the heat transfer effectiveness varies between 88% and 98% for a given air and oil flow rates while it increases with air inlet temperature due …


Aerodynamic Centers Of Arbitrary Airfoils Below Stall, Douglas F. Hunsaker, Orrin D. Pope, Jeffrey D. Taylor, Josh Hodson Aug 2019

Aerodynamic Centers Of Arbitrary Airfoils Below Stall, Douglas F. Hunsaker, Orrin D. Pope, Jeffrey D. Taylor, Josh Hodson

Mechanical and Aerospace Engineering Student Publications and Presentations

The aerodynamic center of an airfoil is commonly estimated to lie at the quarter-chord. This traditional estimate is based on thin airfoil theory, which neglects aerodynamic and geometric nonlinearities. Even below stall, these nonlinearities can have a significant effect on the location of the aerodynamic center. Here, a method is presented for accurately predicting the aerodynamic center of any airfoil from known lift, drag, and pitching-moment data as a function of angle of attack. The method accounts for aerodynamic and geometric nonlinearities, and it does not include small-angle, small-camber, and thin-airfoil approximations. It is shown that the aerodynamic center of …


Isentropic Efficiency And Theoretical Analysis Of The Planetary Rotor Expander, Joseph L. James Aug 2019

Isentropic Efficiency And Theoretical Analysis Of The Planetary Rotor Expander, Joseph L. James

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

Expanders allow pressurized fluids to undergo a pressure decrease in a controlled environment via volumetric growth to extract fluid energy. There are many types of expanders, and the objective of this thesis is to model the efficiencies of the planetary rotor expander (PRE), a century-old design undeveloped due to insufficient manufacturing capabilities (until recently). Geometric relationships are derived and mathematical models are generated to determine the efficiency of the PRE as a function of design variables. Two industrially relevant case studies show that, to maximize isentropic efficiency, the planetary rotor expander (PRE) rotational frequency is maximized and rotor geometry optimized.


Calibration Of Hot-Film X-Probes For High Accuracy Angle Alignment In Wind Tunnels, Dallin L. Jackson Aug 2019

Calibration Of Hot-Film X-Probes For High Accuracy Angle Alignment In Wind Tunnels, Dallin L. Jackson

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

This thesis investigates the use of hot-film thermal anemometers to align a plate on a wind tunnel at Hill Air Force Base that is used to calibrate Angle of Attack Transmitters on F-16s. A reoccurring problem with this wind tunnel is that no two instruments can verify an angle reading of the the mounting plate for the Angle of Attack Transmitters to the air stream in the wind tunnel. Multiple thermal anemometer calibration methods, such as Jorgensen’s equation and a look-up table are implemented to attempt to achieve consistent measurements between multiple probes. The results show that it is necessary …


How Vision Governs The Collective Behaviour Of Dense Cycling Pelotons, J. Belden, Mohammad M. Mansoor, A. Hellum, S. R. Rahman, A. Meyer, C. Pease, J. Pacheco, S. Koziol, Tadd T. Truscott Jul 2019

How Vision Governs The Collective Behaviour Of Dense Cycling Pelotons, J. Belden, Mohammad M. Mansoor, A. Hellum, S. R. Rahman, A. Meyer, C. Pease, J. Pacheco, S. Koziol, Tadd T. Truscott

Mechanical and Aerospace Engineering Faculty Publications

In densely packed groups demonstrating collective behaviour, such as bird flocks, fish schools or packs of bicycle racers (cycling pelotons), information propagates over a network, with individuals sensing and reacting to stimuli over relatively short space and time scales. What remains elusive is a robust, mechanistic understanding of how sensory system properties affect interactions, information propagation and emergent behaviour. Here, we show through direct observation how the spatio-temporal limits of the human visual sensory system govern local interactions and set the network structure in large, dense collections of cyclists. We found that cyclists align in patterns within a ± 30° …


Minimizing Induced Drag With Weight Distribution, Lift Distribution, Wingspan, And Wing-Structure Weight, Warren F. Phillips, Douglas F. Hunsaker, Jeffrey D. Taylor Jun 2019

Minimizing Induced Drag With Weight Distribution, Lift Distribution, Wingspan, And Wing-Structure Weight, Warren F. Phillips, Douglas F. Hunsaker, Jeffrey D. Taylor

Mechanical and Aerospace Engineering Student Publications and Presentations

Because the wing-structure weight required to support the critical wing section bending moments is a function of wingspan, net weight, weight distribution, and lift distribution, there exists an optimum wingspan and wing-structure weight are presented for rectangular wings with four different sets of design constraints. These design constraints are fixed lift distribution and net weight combined with 1) fixed maximum stress and wing loading, 2) fixed maximum deflection and wing loading, 3) fixed maximum stress and stall speed and 4) fixed maximum deflection and stall speed. For each of these analytic solutions, the optimum wing-structure weight is found to depend …


A Multi-Fidelity Prediction Of Aerodynamic And Sonic Boom Characteristics Of The Jaxa Wing Body, Forrest L. Carpenter, Paul G. A. Cizmas, Christian R. Bolander, Ted N. Giblette, Doug F. Hunsaker Jun 2019

A Multi-Fidelity Prediction Of Aerodynamic And Sonic Boom Characteristics Of The Jaxa Wing Body, Forrest L. Carpenter, Paul G. A. Cizmas, Christian R. Bolander, Ted N. Giblette, Doug F. Hunsaker

Mechanical and Aerospace Engineering Student Publications and Presentations

This paper presents a detailed comparison between the linear panel solver PANAIR A502 and the in-house Navier–Stokes solver UNS3D for a supersonic low-boom geometry. The high-fidelity flow solver was used to predict both the inviscid and laminar flow about the aircraft geometry. The JAXA wing body was selected as the supersonic low-boom geometry for this study. A comparison of the undertrack near-field pressure signatures showed good agreement between the three levels of model fidelity along the first 0.8L of the signature. Large oscillations in the PANAIR results were observed. The PANAIR discrepancies were traced back to violations of the …


A High Magnification Uv Lens For High Temperature Optical Strain Measurements, Robert S. Hansen, Trevor J. Bird, Ren Voie, Katharine Z. Burn, Ryan B. Berke Apr 2019

A High Magnification Uv Lens For High Temperature Optical Strain Measurements, Robert S. Hansen, Trevor J. Bird, Ren Voie, Katharine Z. Burn, Ryan B. Berke

Mechanical and Aerospace Engineering Faculty Publications

Digital Image Correlation (DIC) measures full-field strains by tracking displacements of a specimen using images taken before and after deformation. At high temperatures, materials emit light in the form of blackbody radiation, which can interfere with DIC images. To screen out that light, DIC has been recently adapted by using ultraviolet (UV) range cameras, lenses, and filters. Before now, UV-DIC had been demonstrated at the centimeter scale using commercially available UV lenses and filters. Commercial high-magnification lenses using visible light have also been used for DIC. However, there is currently no commercially available high-magnification lens that will allow images to …


Water Walking As A New Mode Of Free Surface Skipping, Randy Craig Hurd, Jesse Belden, Allan F. Bower, Sean Holekamp, Michael A. Jandron, Tadd T. Truscott Apr 2019

Water Walking As A New Mode Of Free Surface Skipping, Randy Craig Hurd, Jesse Belden, Allan F. Bower, Sean Holekamp, Michael A. Jandron, Tadd T. Truscott

Mechanical and Aerospace Engineering Faculty Publications

Deformable elastomeric spheres are evaluated experimentally as they skip multiple times over a lake surface. Some spheres are embedded with small inertial measurement units to measure the acceleration experienced during water surface impact. A model for multiple impact events shows good agreement between measured acceleration, number of skipping events and distanced traveled. The experiment reveals a new mode of skipping, “water walking”, which is observed for relatively soft spheres impacting at low impact angles. The mode occurs when the sphere gains significant angular velocity over the first several impacts, causing the sphere to maintain a deformed, oblong shape. The behavior …


Peloton Tracking And Analysis From The 2016 Tour De France, Tadd T. Truscott, Jesse Belden Mar 2019

Peloton Tracking And Analysis From The 2016 Tour De France, Tadd T. Truscott, Jesse Belden

Browse all Datasets

The work associated with this project is described in a manuscript entitled "How vision governs the collective behavior of cycling pelotons" by Belden et al., along with an electronic supplementary material document. We investigate properties of densely packed groups of bicycle racers, which are known as cycling pelotons. These pelotons exhibit features of collective animal behavior, including emergent behavior from inter-individual interactions. In this data set, we classify global shapes of the peloton, and identify and track individual cyclists to determine the details of network structure. We also investigate motion waves that propagate through the pelotons.


Developing Silent Unmanned Aerial Vehicles, Glen Wright Mar 2019

Developing Silent Unmanned Aerial Vehicles, Glen Wright

Research on Capitol Hill

The optimization of a drone propeller’s acoustic signature can play an important role in the Department of Defense, observation of nature, commercial operations, and marine propulsion.

The aim of this research is to optimize the acoustic signature of propellers by isolating and modifying specific propeller characteristics. Propeller variations being researched in this project include:

  • Leading-edge serrations: break up incoming fluid and evenly disperse it along airfoil
  • Trailing-edge serrations: minimize vortex occurrences along the trailing edge of airfoil
  • Airfoil ribs: force fluid through tangential channels along airfoil
  • Winglets: disrupt turbulence and vortices at the tips of the propeller

Successful drone propeller …


A Sine-Summation Algorithm For The Prediction Of Ship Deck Motion, Christian R. Bolander, Douglas F. Hunsaker Jan 2019

A Sine-Summation Algorithm For The Prediction Of Ship Deck Motion, Christian R. Bolander, Douglas F. Hunsaker

Mechanical and Aerospace Engineering Student Publications and Presentations

Landing a fixed-wing aircraft on a moving aircraft carrier is a risky and inefficient process. Having an accurate prediction of ship deck motion decreases the risk posed to both the pilot and the aircraft and increases the efficiency of landing maneuvers. The present work proposes the use of a sine-summation algorithm to predict future ship motion. The algorithm decomposes recorded ship acceleration data into its characteristic harmonic parameters using a fast Fourier transform. The harmonic parameters are then used in a summation of sine waves to create a fit for the acceleration data, which is projected into future time intervals …


A Procedure For The Calculation Of The Perceived Loudness Of Sonic Booms, Christian R. Bolander, Douglas F. Hunsaker, Hao Shen, Forrest L. Carpenter Jan 2019

A Procedure For The Calculation Of The Perceived Loudness Of Sonic Booms, Christian R. Bolander, Douglas F. Hunsaker, Hao Shen, Forrest L. Carpenter

Mechanical and Aerospace Engineering Student Publications and Presentations

Implementing a method to calculate the human ear’s perceived loudness of a sonic boom requires consulting scattered literature with varying amounts of detail. This work describes a comprehensive implementation of Stevens’ Mark VII in Python, called PyLdB. References to literary works are included in enough detail so that the reader could use this work as a guide to implement the Mark VII algorithm. The details behind the mathematics of the Mark VII algorithm are included and PyLdB is used to calculate the perceived loudness of an example pressure signature. PyLdB is benchmarked against a widely used and validated code by …