Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

2015

The Summer Undergraduate Research Fellowship (SURF) Symposium

Discipline
Keyword

Articles 1 - 27 of 27

Full-Text Articles in Mechanical Engineering

3d Printing Nanostructured Thermoelectric Device, Qianru Jia, Collier Miers, Amy Marconnet Aug 2015

3d Printing Nanostructured Thermoelectric Device, Qianru Jia, Collier Miers, Amy Marconnet

The Summer Undergraduate Research Fellowship (SURF) Symposium

Thermoelectric materials convert thermal energy to electrical energy and vice versa. Thermoelectrics have attracted much attention and research efforts due to the possibility solving electronic cooling problems and reducing energy consumption through waste heat recovery. The efficiency of a thermoelectric material is determined by the dimensionless figure of merit ZT, which depends on both thermal and electrical properties. Researchers have worked for several decades to improve the ZT, but there had been little progress until nanomaterials and nanofabrication became widely available. Nanotechnology makes the ZT enhancement attainable by disconnecting the linkage between thermal and electrical transport. Printing customized, flexible thermoelectric …


Test Rig Design For Compact Variable Displacement Vane Pump, Pratik Chawla, Ryan Jenkins, Monika Ivantysynova Aug 2015

Test Rig Design For Compact Variable Displacement Vane Pump, Pratik Chawla, Ryan Jenkins, Monika Ivantysynova

The Summer Undergraduate Research Fellowship (SURF) Symposium

Variable displacement vane pumps (VDVP) are one type of positive displacement pumps used in automatic transmission vehicles for lubricating the gears, cooling the transmission and actuating the clutches. Though fixed displacement pumps are widely used, they output a constant effective flow at a given speed. Depending on pump sizing considerations, the pump can be oversized at high speeds because flow demand of the transmission is independent of engine speed. The excess flow returns to the tank through an orifice that causes the oil to heat up, increasing the energy required for cooling and reducing the efficiency of the transmission. A …


Assessment Of Critical Technologies For Gas Turbine Engines Using Numerical Tools, Vinicius Pessoa Mapelli, Guillermo Paniagua, Jorge Sousa Aug 2015

Assessment Of Critical Technologies For Gas Turbine Engines Using Numerical Tools, Vinicius Pessoa Mapelli, Guillermo Paniagua, Jorge Sousa

The Summer Undergraduate Research Fellowship (SURF) Symposium

In 2014 gas turbine engine has reached a market value of 82.5 billion dollars, of which 59.5% are related to aircraft propulsion. The continuous market expansion attracts more and more the interest of researchers and industries towards the development of accurate numerical techniques to model thermodynamically the entire engine. This practice allows a performance and optimization analysis before the actual experimental testing, reducing the time and required investment in the design of a new engine. In this paper, a recently developed open source numerical tool named “Toolbox for the Modeling and Analysis of Thermodynamic Systems” (T-MATS) is used to assess …


Application Of Ultrasound In The Measurement Of Lubricant Fluid Film Thickness In The Piston-Cylinder Interface Of An Axial Piston Pump, Dhruv Subramaniam, Dan Mizell, Monika Ivantysynova Aug 2015

Application Of Ultrasound In The Measurement Of Lubricant Fluid Film Thickness In The Piston-Cylinder Interface Of An Axial Piston Pump, Dhruv Subramaniam, Dan Mizell, Monika Ivantysynova

The Summer Undergraduate Research Fellowship (SURF) Symposium

In this paper a feasibility study has been conducted to determine a technique for the measurement of lubricant fluid film thickness in the piston-cylinder interface of an axial piston pump. The thickness of the lubricant film has a significant impact on the efficiency of the piston pump yet it still remains an uncertainty. If the lubricant film is too thin then friction will cause excessive damage resulting in deformation of interacting surfaces resulting in further uncertainty in thickness measurement. If the lubricant film is too thick then there is excessive leakage which will compromise the efficiency of the system. Acoustic, …


Securemems: Selective Deposition Of Energetic Materials, Trevor J. Fleck, Josiah R. Thomas, Lillian F. Miles, Allison K. Murray, Zane A. Roberts, Raghav Ramachandran, I Emre Gunduz, Steven F. Son, George T. Chiu, Jeffrey F. Rhoads Aug 2015

Securemems: Selective Deposition Of Energetic Materials, Trevor J. Fleck, Josiah R. Thomas, Lillian F. Miles, Allison K. Murray, Zane A. Roberts, Raghav Ramachandran, I Emre Gunduz, Steven F. Son, George T. Chiu, Jeffrey F. Rhoads

The Summer Undergraduate Research Fellowship (SURF) Symposium

There exists a pressing operational need to secure and control access to high-valued electromechanical systems, and in some cases render them inoperable. Developing a reliable method for depositing energetic materials will allow for the near-seamless integration of electromechanical systems and energetic material, and, in turn, provide the pathway for security and selective destruction that is needed. In this work, piezoelectric inkjet printing was used to selectively deposit energetic materials. Nanothermites, comprising of nanoscale aluminum and nanoscale copper oxide suspended in dimethyl-formamide (DMF), were printed onto silicon wafers, which enabled both thermal and thrust measurements of the decomposing energetic material. Various …


Simulation, Control And Testing Of Advanced Hydraulic Hybrid Transmissions, Italo M. Ramos, Monika Ivantysynova, Michael Sprengel Aug 2015

Simulation, Control And Testing Of Advanced Hydraulic Hybrid Transmissions, Italo M. Ramos, Monika Ivantysynova, Michael Sprengel

The Summer Undergraduate Research Fellowship (SURF) Symposium

Hydraulic hybrids transmissions have the potentially to substantially improve the fuel efficiency of on road vehicles. In fact recent studies have demonstrated that this technology can improve fuel economy by upwards of 30% over competing electric hybrids. To further improve the fuel economy and performance of this technology a novel blended hydraulic hybrid transmission has been constructed at the Maha Fluid Power Research Center. While this novel hybrid architecture created by the Maha lab has many benefits over conventional systems, there are a number of control challenges present due to several discrete modes of operation. And though improving fuel economy …


Fracture Mechanics-Based Simulation Of Pv Module Delamination, Dominic I. Jarecki, Johanna B. Palsdottir, Peter Bermel, Marisol Koslowski Aug 2015

Fracture Mechanics-Based Simulation Of Pv Module Delamination, Dominic I. Jarecki, Johanna B. Palsdottir, Peter Bermel, Marisol Koslowski

The Summer Undergraduate Research Fellowship (SURF) Symposium

Photovoltaic (PV) cells are rapidly growing as a renewable alternative to fossil fuels like coal, oil, and natural gas. However, greater adoption has also reduced government subsidies, placing the onus of making solar panels economically competitive on innovative research. While multiple methods have been considered for reducing costs, with each reduction in cost comes the associated peril of reduction in quality and useful lifetime. Several problems considered solved have now resurfaced as potential failure mechanisms with the introduction of cheaper PV cell technologies. However, to remain economically viable, PV modules will not only have to become cheaper, they will have …


Optimization In The Simulation Of Jammed Polyhedral Particles, Joseph W. Mynhier, Ishan Srivastava, Timothy S. Fisher Aug 2015

Optimization In The Simulation Of Jammed Polyhedral Particles, Joseph W. Mynhier, Ishan Srivastava, Timothy S. Fisher

The Summer Undergraduate Research Fellowship (SURF) Symposium

Energy loss due to poor transport properties in electrically and thermally conducting materials, such as battery electrodes and thermoelectric composites, contributes to the energy inefficiency of electronic devices. For conductive materials composed of granular materials, particle-particle contact topology strongly governs the efficiency of energy transfer. Although there is a large body of existing work on the arrangements made by granular materials comprised of spherical particles, less is known about the mechanically stable arrangements of granular materials made of convex polyhedra. This project seeks to create a computer simulation of the solidification of convex polyhedra from a diffuse state into a …


Development Of A Shape Memory Polymer Soft Microgripper, Marshall Tatro, David J. Cappelleri, Wuming Jing Aug 2015

Development Of A Shape Memory Polymer Soft Microgripper, Marshall Tatro, David J. Cappelleri, Wuming Jing

The Summer Undergraduate Research Fellowship (SURF) Symposium

The ability to control microrobots by means of magnetic fields has become of increasing interest to researchers. These robots’ ability to reach places tethered microrobots otherwise could not leads to many possible applications in the body, such as delivering drugs to targeted locations and performing biopsies. This study shows the use of shape memory polymer (SMP) to wirelessly actuate a microgripper to be used by a controllable microrobot to achieve these functions. Many smart materials were analyzed in order to find the material that most effectively would accomplish wirelessly gripping, manipulating, and releasing a microobject. Multiple microgripper designs were designed, …


Efficient Exploration Of Quantified Uncertainty In Granular Crystals, Juan C. Lopez Ramirez, Marcial Gonzalez, Ilias Bilionis, Rohit K. Tripathy Aug 2015

Efficient Exploration Of Quantified Uncertainty In Granular Crystals, Juan C. Lopez Ramirez, Marcial Gonzalez, Ilias Bilionis, Rohit K. Tripathy

The Summer Undergraduate Research Fellowship (SURF) Symposium

Granular crystals present unique nonlinear properties that support standing waves. These depend on precompression and impurities. Thus, they can be used for different applications such as impact and shock dissipation. There are different models which rely on reasonable approximations and assumptions. While experimental results show good agreement with theory, there are experimental errors that are not easily explained and are usually attributed to the approximations made and phenomena that are not accounted for. This might be the result of not quantifying the uncertainty, since variables like the grain size, position, mass and Young modulus, of each particle, are uncertain. Building …


Towards An Optical In-Line Characterization Of Nano Petals, Yiming Ding, Huisung Kim, Euiwon Bae Aug 2015

Towards An Optical In-Line Characterization Of Nano Petals, Yiming Ding, Huisung Kim, Euiwon Bae

The Summer Undergraduate Research Fellowship (SURF) Symposium

Carbon Nano Petals (i.e. CNPs) are cantilevered multilayer grapheme sheets that are seeded from core graphite fibers. The resulting structure offers a possibility of minimizing interfacial losses in transport application, improved interactions with surrounding matrix materials in composites, and a route toward substrate independence for device applications. The mass production of CNPs on the substrate required a method that can provide synchronous feedback on the sample status without pulling them out of the production line. Different optical properties can be observed when surfaces with different roughness are illuminated with a highly coherent light such as a laser beam. Similarly, CNPs …


Powder Compaction Simulation, Yuqi Fang, Caroline Baker, Marcial Gonzalez Aug 2015

Powder Compaction Simulation, Yuqi Fang, Caroline Baker, Marcial Gonzalez

The Summer Undergraduate Research Fellowship (SURF) Symposium

Powders are one of most manipulated materials in many industries such as food, pharmaceutical, energy and metallurgical industries. An important process for the powders is the compaction into solids with small porosity or high relative density. However, powders exhibit complex behavior during this process. After rearrangement and jamming of the powder bed, many types of deformation mechanisms dominate the compaction of granular materials, including elastic and plastic deformation of each individual particle. Therefore, having a better understanding of macroscale and microscale properties of powder beds and single particles during the compaction process is necessary. In addition, to reduce cost and …


Dislocation Avalanche Polycrystalline Nickel, Zhiyang Lin, Cao Lei Dr, Marisol Koslowski Prof. Aug 2015

Dislocation Avalanche Polycrystalline Nickel, Zhiyang Lin, Cao Lei Dr, Marisol Koslowski Prof.

The Summer Undergraduate Research Fellowship (SURF) Symposium

Self-organized criticality (SOC) is widely observed in systems ranging from creep deformation of single crystal ice to the movement of glacier. -The behavior of these SOC systems follows a power law distribution, which is time- and space-scale invariant. Previous phase field simulation of single crystal nickel has shown that plastic flow is characterized by intermittent dislocation avalanches, which can be characterized by a power law distribution. Does this scale invariance also exist in polycrystalline material, in which dislocation avalanches may be hindered by grain boundaries? In this study, we characterize the dislocation loops using homogenous region division algorithm and investigate …


The Effects Of Ivc Modulation On Modern Diesel Engines Equipped With Variable Valve Actuation At High Load And Speed, Troy E. Odstrcil, Gregory M. Shaver, Cody M. Allen Aug 2015

The Effects Of Ivc Modulation On Modern Diesel Engines Equipped With Variable Valve Actuation At High Load And Speed, Troy E. Odstrcil, Gregory M. Shaver, Cody M. Allen

The Summer Undergraduate Research Fellowship (SURF) Symposium

Modern diesel compression engines are known for their increased durability, fuel economy and torque when compared with their spark ignition gasoline counterparts. These are some of the reasons why diesel engines are preferred in heavy duty applications such as trains and semi-trucks. During the Heavy Duty Federal Test Procedure transient drive cycle, or HDFTP, nearly 85% of the total fuel burned is at speeds greater than 2000 revolutions per minute (RPM) for the studied engine. Therefore, it is desirable to increase the fuel economy at these loads and speeds. It is hypothesized that the use of late intake valve close …


Altered Combustion Characteristics Of Aluminum Fuels Through Low-Level Fluoropolymer Inclusions With And Without In Situ Nanoaluminum., Courtney K. Murphy, Brandon Terry, Steven F. Son Aug 2015

Altered Combustion Characteristics Of Aluminum Fuels Through Low-Level Fluoropolymer Inclusions With And Without In Situ Nanoaluminum., Courtney K. Murphy, Brandon Terry, Steven F. Son

The Summer Undergraduate Research Fellowship (SURF) Symposium

Aluminum inclusions have been widely used to increase the specific impulse of solid rocket propellant. However, issues arise with the addition of aluminum in the form of agglomeration, which can cause kinetic and thermal losses (i.e., two-phase flow losses) through the nozzle, which can reduce motor performance by as much as 10%. Reduction of agglomerate size may reduce the effect of two-phase flow losses. Polytetrafluoroethylene (PTFE or TeflonTM) inclusions into aluminum via mechanical activation (MA, milling) have been shown to produce a smaller coarse agglomerate size due to microexplosion of the composite particles at the propellant surface. Perflouroalkoxy …


Combustion Wave Propagation Enhancement Of A Nitrocellulose Solid Monopropellant, Omar R. Yehia, Shourya Jain, Li Qiao Aug 2015

Combustion Wave Propagation Enhancement Of A Nitrocellulose Solid Monopropellant, Omar R. Yehia, Shourya Jain, Li Qiao

The Summer Undergraduate Research Fellowship (SURF) Symposium

Improvement and control of the burning behavior and characteristics of solid fuels promise improved performance of systems ranging from solid rocket motors to microelectromechanical systems. Introducing methods to enhance combustion wave propagation velocities of solid propellants is a crucial step in realizing improved performance in rocket motors that use organic nitrate-based propellants. This work aims to enhance the burning characteristics of solid fuels through the use of thermally guided combustion waves. In order to increase the burning rate of solid nitrocellulose fuel layers, graphite sheets were used as thermally conductive bases in order to substantially improve heat transfer to unburned …


Improvement Of Diesel Engines At High Speeds Via Flexible Valve Actuation And Cylinder Deactivation, Dina M. Caicedo Parra, Gregory M. Shaver, Aswin Ramesh Aug 2015

Improvement Of Diesel Engines At High Speeds Via Flexible Valve Actuation And Cylinder Deactivation, Dina M. Caicedo Parra, Gregory M. Shaver, Aswin Ramesh

The Summer Undergraduate Research Fellowship (SURF) Symposium

In the U.S fuel consumption is expected to increase over 20% from 2010 to 2020 especially in the heavy duty segment. As a consequence of the increase in production of heavy and light duty vehicles, regulations and stricter policies are being applied to the emissions of pollutants, including NOx, and soot. This study outlines strategies for using cylinder deactivation and intake valve closure (IVC) modulation to improve fuel economy and increase the rate at which NOx/soot-mitigating aftertreatment devices reach working temperatures. Effects of opening and squeezing variable geometry turbine (VGT) turbocharger were also analyzed. From the results it was observed …


Hot Surface Ignition, Yerbatyr Tursyn, Vikrant Goyal, Alicia Benhidjeb-Carayon, Richard Simmons, Scott Meyer, Jay P. Gore Aug 2015

Hot Surface Ignition, Yerbatyr Tursyn, Vikrant Goyal, Alicia Benhidjeb-Carayon, Richard Simmons, Scott Meyer, Jay P. Gore

The Summer Undergraduate Research Fellowship (SURF) Symposium

Undesirable hot surface ignition of flammable liquids is one of the hazards in ground and air transportation vehicles, which primarily occurs in the engine compartment. In order to evaluate the safety and sustainability of candidate replacement fuels with respect to hot surface ignition, a baseline low lead fuel (Avgas 100 LL) and four experimental unleaded aviation fuels recommended for reciprocating aviation engines were considered. In addition, hot surface ignition properties of the gas turbine fuels Jet-A, JP-8, and JP-5 were measured. A test apparatus capable of providing reproducible data was designed and fabricated to experimentally investigate the hot surface ignition …


Integrating Systems For Liquid/Substrate Characterization And Functional Printing, Jianyi Du, J. William Boley, Rebecca K. Kramer Aug 2015

Integrating Systems For Liquid/Substrate Characterization And Functional Printing, Jianyi Du, J. William Boley, Rebecca K. Kramer

The Summer Undergraduate Research Fellowship (SURF) Symposium

Gallium-Indium alloys are recently applied in fabricating soft devices, such as stretchable sensors, electric circuits, micro pumps and optics. Its printability demonstrates the possibility for a wide extension of the application. Current fabrication methods are inefficient when printing is most handled manually, and are highly dependent on material properties. There is need for a fast way to characterize material properties, and to functionally print the given shape on the substrate. This paper presents the construction of an efficiently integrated system with optical imaging and functional printing for Gallium-Indium alloys. The imaging section allows for characterization of material properties to fast …


High Pressure Combustion And Supersonic Jet Ignition For H2/Air, Michael G. Woodworth, Sayan Biswas, Li Qiao Aug 2015

High Pressure Combustion And Supersonic Jet Ignition For H2/Air, Michael G. Woodworth, Sayan Biswas, Li Qiao

The Summer Undergraduate Research Fellowship (SURF) Symposium

There are many incentives to increase the fuel efficiency of combustion processes. This paper looks at two available options to achieve this goal. The former aims to develop an experimental method that can analyze combustion at extremely high pressures to improve the understanding of high pressure H2/air combustion. Experimental data has been lacking a suitable combustion diagnostic to visualize high pressure combustion processes, making it difficult to improve the process. Improvement of x-ray diffraction tomography in a windowless combustor makes it possible to see flame propagation at high pressure. The procedure and chamber are still in the design phase, yet …


Experimental Characterization And Modelling Of Energy Efficient Fluid Supply Systems, Karina M. Bjorklund, Andrea Vacca, Timothy J Opperwall Aug 2015

Experimental Characterization And Modelling Of Energy Efficient Fluid Supply Systems, Karina M. Bjorklund, Andrea Vacca, Timothy J Opperwall

The Summer Undergraduate Research Fellowship (SURF) Symposium

In applications such as in agriculture, construction, and aerospace applications, high pressure hydraulics is the preferred technology to transmit mechanical power. As a consequence, the energy efficiency of the hydraulic system used to perform the mechanical actuations is of primary concern to reduce the energy consumptions in the abovementioned applications. In an hydraulic system, the primary component determining the energy efficiency is the hydraulic pump. This work focuses on the study of a particular pump design, also referred as external gear pump, particularly used in applications in which the cost of the hydraulic system has to be minimized. The large …


Indentation Probing Of In Vitro Bovine Articular Cartilage: Effects On Chondrocyte Viability And Tissue Biomechanics, Pablo F. Argote, Alan Poon, Xin Xu Ph.D, Corey P. Neu Ph.D. Aug 2015

Indentation Probing Of In Vitro Bovine Articular Cartilage: Effects On Chondrocyte Viability And Tissue Biomechanics, Pablo F. Argote, Alan Poon, Xin Xu Ph.D, Corey P. Neu Ph.D.

The Summer Undergraduate Research Fellowship (SURF) Symposium

Osteoarthritis (OA) consists of a degenerative disease on articular cartilage, which is prone to excessive mechanical loading and frictional resistance that leads to the wear and tear of the tissue. These factors result in the progressive and incurable disease that affects millions of people worldwide. The goal is to characterize chondrocyte viability and the in vitro biomechanical properties of articular cartilage in two confined indentation studies. One study looks at the chondrocyte viability over seven days. The second compares the immediate effects of strain rates on chondrocyte viability and tissue biomechanics. Bovine cartilage explants are harvested, cultured, and then 40% …


Numerical Solver For Multiphase Flows, Victor C B Sousa, Carlo Scalo Aug 2015

Numerical Solver For Multiphase Flows, Victor C B Sousa, Carlo Scalo

The Summer Undergraduate Research Fellowship (SURF) Symposium

The technological development of micro-scale electronic devices is bounded by the challenge of dissipating their heat output. Latent heat absorbed by a fluid during phase transition offers exceptional cooling capabilities while allowing for the design of compact heat exchangers. The understanding of heat transport dynamics in the context of multiphase flow physics is hampered by the limited access to detailed flow features offered by experimental measurements. Computational Fluid Dynamics (CFD) can overcome such difficulties by providing a complete description of the three-dimensional instantaneous flow field. Unfortunately, the majority of the numerical investigations in this field at Purdue are carried out …


Thermal Design Of Three-Dimensional Electronic Assemblies, Yifan Weng, Chun-Pei Chen, Ganesh Subbarayan Aug 2015

Thermal Design Of Three-Dimensional Electronic Assemblies, Yifan Weng, Chun-Pei Chen, Ganesh Subbarayan

The Summer Undergraduate Research Fellowship (SURF) Symposium

Currently, three-dimensional electronic assemblies (3D Packages) are a key technology for enabling heterogeneous integration and “more than Moore” functionality. A critical bottleneck to the viability of 3D Packages is their thermal design. Traditionally, heat spreaders are used as a passive method to reduce the peak temperature as well as temperature gradient on the chip. However, heat spreaders by themselves are often insufficient in stacked, multiple-die containing 3D Packages. Towards this end, to more efficiently remove heat, silicon interposers with through silicon vias (TSV) are used. However, careful design of number and location of TSVs is necessary. In addition, the heat …


Cell-Matrix Interactions During En Masse Cell Migration, Meng Zhuang, Altug Ozcelikkale, Bumsoo Han Aug 2015

Cell-Matrix Interactions During En Masse Cell Migration, Meng Zhuang, Altug Ozcelikkale, Bumsoo Han

The Summer Undergraduate Research Fellowship (SURF) Symposium

Extended wound care, including prolonged treatment of burn injuries, acute and chronic wounds, is a significant source of patient discomfort and financial burden to public healthcare programs. Both accelerated healing and prevention of scar formation are highly desired but remain to be challenging to achieve. This is primary due to limited understanding of interactions between cells and the surrounding extracellular matrix (ECM) during wound healing. Particularly, collective migration of fibroblasts through provisional matrix, so called en masse migration, is one of these interactions that play a critical role in later stages of granulation tissue formation and wound closure. In addition …


Influences Of Wind On Automotive Interior Sound Quality, Sara Huelsman, Patricia Davies, Daniel Carr Aug 2015

Influences Of Wind On Automotive Interior Sound Quality, Sara Huelsman, Patricia Davies, Daniel Carr

The Summer Undergraduate Research Fellowship (SURF) Symposium

The effects of noise on human health (both mental and physical) are well known, and motivation to decrease noise in daily life is prevalent. Wind noise within automotive interior cabins could be detrimental to human health and comfort because of the negative impact on speech intelligibility and fatigue overall. There is little information on human perception of wind noise in automobile interiors though Loudness and Articulation Index have been examined as predictors of human response. They have been found to predict well in some circumstances, but not in others. In this research, a variety of sound quality metrics are being …


Characterization Of Hydrogel Curing Methods For Manufacturability, Hannah E. Brown, Rebecca K. Kramer, Edward L. White Aug 2015

Characterization Of Hydrogel Curing Methods For Manufacturability, Hannah E. Brown, Rebecca K. Kramer, Edward L. White

The Summer Undergraduate Research Fellowship (SURF) Symposium

In the field of soft robotics, hydrogels possess material properties that allow them to function as both soft strain sensors and dielectric elastomer actuators. However, there is still much that needs to be understood about the curing process of hydrogels and the resulting material characteristics before manufacturing these devices can be accomplished. In this study, we investigated the effect of curing time and sample volume on the as-cured material properties of acrylamide-based hydrogels hydrated with lithium and magnesium chloride salt solutions. Samples were cured at room temperature, 60° C and 100° C, and the resulting changes in mechanical stiffness and …