Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 42

Full-Text Articles in Mechanical Engineering

A Reversible And Stable Flake-Like Licoo2 Cathode For Lithium Ion Batteries, Tao Wei, Rui Zeng, Yongming Sun, Yunhui Huang, Kevin Huang Dec 2014

A Reversible And Stable Flake-Like Licoo2 Cathode For Lithium Ion Batteries, Tao Wei, Rui Zeng, Yongming Sun, Yunhui Huang, Kevin Huang

Faculty Publications

A dense and thick flake-like cathode structure was demonstrated to have a preferential crystallographic orientation for Li+ migration and a better tolerance to cracking, both of which enable a reversible and stable capacity at moderate rates from 0.1 to 2 C.


Fabrication And Characterization Of Novel Electrodes For Solid Oxide Fuel Cell For Efficient Energy Conversion, Yu Chen Dec 2014

Fabrication And Characterization Of Novel Electrodes For Solid Oxide Fuel Cell For Efficient Energy Conversion, Yu Chen

Theses and Dissertations

Solid oxide fuel cells (SOFCs) have been considered as one of the most promising technologies for future energy conversion since they can in principle be operated with fuels ranging from H2 to any hydrocarbon fuel. However, the system cost and coking (when using hydrocarbon as fuel) issues for the state-of-art electrode materials/designs often limit their further application. The objective of this Ph.D dissertation is aiming at overcoming these problems and accelerating SOFC commercialization. One approach to cost reduction is lowering the SOFC operating temperature to below 800 or even 600 oC, so that inexpensive materials can be used and quick …


Behavior Of Piezoelectric Wafer Active Sensor In Various Media, Tuncay Kamas Dec 2014

Behavior Of Piezoelectric Wafer Active Sensor In Various Media, Tuncay Kamas

Theses and Dissertations

The dissertation addresses structural health monitoring (SHM) techniques using ultrasonic waves generated by piezoelectric wafer active sensors (PWAS) with an emphasis on the development of theoretical models of standing harmonic waves and guided waves. The focal objective of the research is to extend the theoretical study of electro-mechanical coupled PWAS as a resonator/transducer that interacts with standing and traveling waves in various media through electro-mechanical impedance spectroscopy (EMIS) method and guided wave propagation. The analytical models are developed and the coupled field finite element analysis (CF-FEA) models are simulated and verified with experiments. The dissertation is divided into two parts …


Cost Avoidance Analysis Of Military Aircraft Components Utilizing Condition-Based Maintenance Practices, Erin Ballentine Dec 2014

Cost Avoidance Analysis Of Military Aircraft Components Utilizing Condition-Based Maintenance Practices, Erin Ballentine

Theses and Dissertations

This research involves two major case studies. Both look at the current maintenance practices done by the United States Army and propose a solution for improvement utilizing condition-based maintenance (CBM) practices. Each study details a cost avoidance that can be earned by implementing the solutions and the resulting benefits that can be experienced. Case Study I is a return on investment (ROI) that analyzes the benefits of the implementation of elastomeric wedges as vibration control on the Apache (AH-64D) aircraft. Analysis of the material and operational costs shows that the use of self-adhering elastomeric trailing edge wedges on the Apache …


Low Reynolds Number Turbulence: Mechanisms And Applications, Wei Zhao Dec 2014

Low Reynolds Number Turbulence: Mechanisms And Applications, Wei Zhao

Theses and Dissertations

Turbulence, as one of "the most important unsolved classical problem in physics" (R. Feynman, 1932), has been investigated for more than 130 years. Conventionally, turbulence is believed to be a phenomenon of high Reynolds numbers (Re). However, we find that turbulence can also be achieved at low Re by proper external forcing, either in macroflows or in microflows. In macroflows, the characteristics of high Re turbulence can be achieved in confined flows, when the bulk flow Re is around 400, by external forcing at its optimal frequency (Wang 2003; Wang 2006). Interestingly, the optimal narrow band of frequency is fixed …


On The Development Of High Strain Rate Experiments For The Characterization Of Engineering Materials, Silas P. Mallon Dec 2014

On The Development Of High Strain Rate Experiments For The Characterization Of Engineering Materials, Silas P. Mallon

Theses and Dissertations

In order to predict the damage accumulation and failure processes associated with highly dynamic events such as blast loading, shock wave loading, and ballistic impact loading, a commensurate understanding of the fundamental constitutive and fracture behavior of materials subjected to such high rate loading conditions is necessary. In this effort, high strain rate experimental facilities consisting of a shock tube apparatus and a torsional split Hopkinson bar apparatus have been designed, constructed, and subsequently used to investigate the mechanical properties of an array of engineering materials subjected to a variety of dynamic loading conditions. Designs for the experimental equipment utilized …


Applications Of Advanced Imaging Methods: Macro-Scale Studies Of Woven Composites And Micro-Scale Measurements On Heated Ic Packages, Siming Guo Dec 2014

Applications Of Advanced Imaging Methods: Macro-Scale Studies Of Woven Composites And Micro-Scale Measurements On Heated Ic Packages, Siming Guo

Theses and Dissertations

As a representative advanced imaging technique, the digital image correlation (DIC) method has been well established and widely used for deformation measurements in experimental mechanics. This methodology, both 2D and 3D, provides qualitative and quantitative information regarding the specimen’s non-uniform deformation response. Its full-field capabilities and non-contacting approach are especially advantageous when applied to heterogeneous material systems such as fiber-reinforced composites and integrated chip (IC) packages. To increase understanding of damage evolution in advanced composite material systems, a series of large deflection bending-compression experiments and model predictions have been performed for a woven glass-epoxy composite material system. Stereo digital image …


Direct Synthesis Of Methane From Co2-H2O Co-Electrolysis In Tubular Solid Oxide Electrolysis Cells, Long Chen, Fanglin Chen, Changrong Xia Dec 2014

Direct Synthesis Of Methane From Co2-H2O Co-Electrolysis In Tubular Solid Oxide Electrolysis Cells, Long Chen, Fanglin Chen, Changrong Xia

Faculty Publications

Directly converting CO2 to hydrocarbons offers a potential route for carbon-neutral energy technologies. Here we report a novel design, integrating the high-temperature CO2–H2O co-electrolysis and low-temperature Fischer–Tropsch synthesis in a single tubular unit, for the direct synthesis of methane from CO2 with a substantial yield of 11.84%.


Synthesis And Formation Mechanism Of Cuins2 Nanocrystals With A Tunable Phase, Chao Yu, Linlin Zhang, Long Tian, Dan Liu, Fanglin Chen, Cheng Wang Nov 2014

Synthesis And Formation Mechanism Of Cuins2 Nanocrystals With A Tunable Phase, Chao Yu, Linlin Zhang, Long Tian, Dan Liu, Fanglin Chen, Cheng Wang

Faculty Publications

Chalcopyrite CuInS2 (CIS) hierarchical structures composed of nanoflakes with a thickness of about 5 nm were synthesized by a facial solvothermal method. The thermodynamically metastable wurtzite phase CIS would be obtained by using InCl3 instead of In(NO3)3 as In precursor. The effects of the In precursor and the volume of concentrated HCl aqueous solution on the phases and morphologies of CIS nanocrystals have been systematically investigated. Experimental results indicated that the obtained phases of CIS nanocrystals were predominantly determined by precursor-induced intermediate products. The photocatalytic properties of chalcopyrite and wurtzite CIS in visible-light-driven degradation of …


Biphilic Nanoporous Surfaces Enabled Exceptional Drag Reduction And Capillary Evaporation Enhancement, Xianming Dai, Fanghao Yang, Ronggui Yang, Xinyu Huang, William A. Rigdon, Xiaodong Li, Chen Li Nov 2014

Biphilic Nanoporous Surfaces Enabled Exceptional Drag Reduction And Capillary Evaporation Enhancement, Xianming Dai, Fanghao Yang, Ronggui Yang, Xinyu Huang, William A. Rigdon, Xiaodong Li, Chen Li

Faculty Publications

Simultaneously achieving drag reduction and capillary evaporation enhancement is highly desired but challenging because of the trade-off between two distinct hydrophobic and hydrophilic wettabilities. Here, we report a strategy to synthesize nanoscale biphilic surfaces to endow exceptional drag reduction through creating a unique slip boundary condition and fast capillary wetting by inducing nanoscopic hydrophilic areas. The biphilic nanoporous surfaces are synthesized by decorating hydrophilic functional groups on hydrophobic pristine multiwalled carbon nanotubes. We demonstrate that the carbon nanotube-enabled biphilic nanoporous surfaces lead to a 63.1% reduction of the friction coefficient, a 61.7% wetting speed improvement, and up to 158.6% enhancement …


Host-Guest Interaction Dictated Selective Adsorption And Fluorescence Quenching Of A Luminescent Lightweight Metal-Organic Framework Toward Liquid Explosives, Dan Liu, Xiaojuan Liu, Yongxin Liu, Yang Yu, Fanglin Chen, Cheng Wang Oct 2014

Host-Guest Interaction Dictated Selective Adsorption And Fluorescence Quenching Of A Luminescent Lightweight Metal-Organic Framework Toward Liquid Explosives, Dan Liu, Xiaojuan Liu, Yongxin Liu, Yang Yu, Fanglin Chen, Cheng Wang

Faculty Publications

In this article, we report the successful preparation of a Mg-based luminescent MIL-53 metal–organic framework (MOF), namely [Mg2(BDC)2(BPNO)]·2DMF (1) (BDC = 1,4-benzene dicarboxylate, BPNO = 4,4’- dipyridyl-N,N’-dioxide, DMF = N,N-dimethylformamide) in a mixed solvent containing a 2 : 3 volume ratio of DMF and ethanol (EtOH) under solvothermal conditions. Desolvated compound 1a can be used as an absorbent for selective adsorption and separation of liquid explosives, including nitroaromatic (nitrobenzene (NB)) and nitroaliphatic (nitromethane (NM) and nitroethane (NE)) compounds, through single crystal-to-single crystal (SC–SC) transformations. As one of the weakly luminescent MOFs, the luminescence of compound 1a could be quenched by …


Thermal Analysis Of High Pressure Micro Plasma Discharge, Mostafa Mobli Aug 2014

Thermal Analysis Of High Pressure Micro Plasma Discharge, Mostafa Mobli

Theses and Dissertations

High pressure micro plasma discharge has been at the center of interest in recent years, because of their vast applications, ease of access and cost efficiency. This attributes to atmospheric discharges that are generated in ambient conditions and therefore can be readily applicable to everyday use. The absence of vacuum makes these high pressure discharges to be inexpensive to operate. Despite the ease of operation, the high pressure is a source of enhanced gas heating as the gas temperature cannot be controlled by diffusion alone. Gas heating is therefore an important factor when it comes to the simulation of high …


Plant-Biomimetic Hydrogel Actuators: Creating Movement In Hydrogels Through The Study Of Plants, Christen Rhodes Aug 2014

Plant-Biomimetic Hydrogel Actuators: Creating Movement In Hydrogels Through The Study Of Plants, Christen Rhodes

Theses and Dissertations

Plants are sessile organisms that have developed methods of movement to respond to environmental stimuli. Some of the approaches feature the unequal expansion of cells and controlling deformation direction through fibers under swelling and drying. Hydrogels are three dimensional polymer networks that have the capacity for large volume changes due their affinity for water and can be tough and/or stimuli-responsive. In this paper, three preliminary plant-biomimetic hydrogel actuator designs are discussed and tested from wet to dry. The first actuator design, termed a 1%-0.1% bilayer, features two layers of different swelling and drying rates due to differences in cross-linking density. …


Dielectric Properties Of Composite Materials During Damage Accumulation And Fracture, Md. Rassel Raihan Aug 2014

Dielectric Properties Of Composite Materials During Damage Accumulation And Fracture, Md. Rassel Raihan

Theses and Dissertations

Fiber reinforced polymer matrix composite materials have many unique properties and their high performance makes them available to use in many advanced technologies i.e. aerospace, microelectronics, and energy storage. There is a correlation that exists between the long term behavior of those materials under combined mechanical, thermal, and electrical fields, and the functional properties and characteristics of the composite materials that requires a fundamental understanding of the material state changes caused by deformation and damage accumulation. This will ultimately lead, for example, to the design and synthesis of optimal multifunctional material systems. Composite materials are heterogeneous and the complex morphology …


Structural Health Monitoring Using Linear And Nonlinear Ultrasonic Guided Waves, Yanfeng Shen Aug 2014

Structural Health Monitoring Using Linear And Nonlinear Ultrasonic Guided Waves, Yanfeng Shen

Theses and Dissertations

The dissertation addresses Structural Health Monitoring (SHM) using linear and nonlinear ultrasonic guided waves, with an emphasis on the development of analytical and numerical models of guided wave propagation and interaction with linear and nonlinear structural damage.

An analytical model was developed based on the exact Lamb wave solution for the simulation of Lamb wave propagation and interaction with damage. The damage effects were inserted into the model using complex valued wave damage interaction coefficients (WDICs). The analytical procedure was coded as a framework into a MATLAB Graphical User Interface (GUI), and the software WaveFormRevealer (WFR) was developed as a …


Ultrasonics Transduction In Metallic And Composite Structures For Structural Health Monitoring Using Extensional And Shear Horizontal Piezoelectric Wafer Active Sensors, Ayman Kamal Abdelrahman Aug 2014

Ultrasonics Transduction In Metallic And Composite Structures For Structural Health Monitoring Using Extensional And Shear Horizontal Piezoelectric Wafer Active Sensors, Ayman Kamal Abdelrahman

Theses and Dissertations

Structural health monitoring (SHM) is crucial for monitoring structures performance, detecting the initiation of flaws and damages, and predicting structural life span. The dissertation emphasizes on developing analytical and numerical models for ultrasonics transduction between piezoelectric wafer active sensors (PWAS), and metallic and composite structures.

The first objective of this research is studying the power and energy transduction between PWAS and structure for the aim of optimizing guided waves mode tuning and PWAS electromechanical (E/M) impedance for power-efficient SHM systems. Analytical models for power and energy were developed based on exact Lamb wave solution with application on multimodal Lamb wave …


Oxygen Flux And Dielectric Response Study Of Mixed Ionic-Electronic Conducting (Miec) Heterogeneous Functional Materials, Fazle Rabbi Aug 2014

Oxygen Flux And Dielectric Response Study Of Mixed Ionic-Electronic Conducting (Miec) Heterogeneous Functional Materials, Fazle Rabbi

Theses and Dissertations

Dense mixed ionic-electronic conducting (MIEC) membranes consisting of ionic conductive perovskite-type and/or fluorite-type oxides and high electronic conductive spinel type oxides, at elevated temperature can play a useful role in a number of energy conversion related systems including the solid oxide fuel cell (SOFC), oxygen separation and permeation membranes, partial oxidization membrane reactors for natural gas processing, high temperature electrolysis cells, and others. This study will investigate the impact of different heterogeneous characteristics of dual phase ionic and electronic conductive oxygen separation membranes on their transport mechanisms, in an attempt to develop a foundation for the rational design of such …


Investigation Of Thermal Performance Of Nanoparticle Enhanced Ionic Liquids (Neils) For Solar Collector Applications, Titan Chandra Paul Aug 2014

Investigation Of Thermal Performance Of Nanoparticle Enhanced Ionic Liquids (Neils) For Solar Collector Applications, Titan Chandra Paul

Theses and Dissertations

Concentrated Solar Power (CSP) is a prominent alternative energy technology, where mirrors or lenses are used to concentrate sunlight from a large area and stored in a collector filled with heat transfer fluid (HTF). The energy from this HTF is used to produce steam for power generation. CSP system requires high heat storage capacity and thermally stable HTF to reduce its operating cost. Having suitable thermophysical properties, ionic liquids (ILs) is considered as a potential HTF for the CSP applications; however thermophysical properties of ILs can be further enhanced by dispersing small volume percentages of nanoparticles. This liquid is called …


Performance And Durability Of Electrodes With Platinum Catalysts In Polymer Electrolyte Cells Prepared By Ultrasonic Spray Deposition, William A. Rigdon Aug 2014

Performance And Durability Of Electrodes With Platinum Catalysts In Polymer Electrolyte Cells Prepared By Ultrasonic Spray Deposition, William A. Rigdon

Theses and Dissertations

Catalysts in the electrodes of polymer electrolyte cells serve a critical function in reactions which can be used to either generate electrical energy from chemical fuels or convert electrical energy into chemicals. For low temperature electrochemical fuel cells, platinum is often utilized for its exceptional catalytic activities towards hydrogen oxidation and oxygen reduction reactions of the anode and cathode, respectively. However, the limited supply of platinum and high demand result in prohibitive costs plaguing commercialization of this technology. Therefore, minimal amounts of the catalyst should be used to achieve the maximum output to reduce expenses. Electrochemical behavior is governed by …


Phonon Confinement Using Spirally Designed Elastic Resonators In Discrete Continuum, Sourav Banerjee, Raiz U. Ahmed Jun 2014

Phonon Confinement Using Spirally Designed Elastic Resonators In Discrete Continuum, Sourav Banerjee, Raiz U. Ahmed

Faculty Publications

Periodic and chiral orientation of microstructures, here we call phononic crystals, have extraordinary capabilities to facilitate the innovative design of new generation metamaterials. Periodic arrangements of phononic crystals are capable of opening portals of non-passing, non-dispersive mechanical waves. Defying conventional design of regular periodicity, in this paper spirally periodic but chiral orientation of resonators are envisioned. Dynamics of the spirally connected resonators and the acoustic wave propagation through the spirally connected multiple local resonators are studied using fundamental physics. In present study the spiral systems with local resonators are assumed to be discrete media immersed in fluid. In this paper …


Uncertainty Quantification Driven Predictive Multi-Scale Model For Synthesis Of Mycotoxins, Sourav Banerjee, Gabriel A. Terejanu, Anindya Chanda Jun 2014

Uncertainty Quantification Driven Predictive Multi-Scale Model For Synthesis Of Mycotoxins, Sourav Banerjee, Gabriel A. Terejanu, Anindya Chanda

Faculty Publications

Many toxic molds synthesize and release an array of poisons, termed mycotoxins that have an enormous impact on human health, agriculture and economy [1]. These molds contaminate our buildings, indoor air and crops, cause life threatening human and animal diseases and reduce agricultural output [2]. In order to design appropriate approaches to minimize the detrimental effects of these fungi, it is essential to develop diagnostic methodologies that can rapidly and accurately determine based on fungal strains and their growth patterns, the extent of mycotoxin mediated damage caused to the environment.Here we developed a novel multi-scale predictive mathematical model that could …


Redox Stable Anodes For Solid Oxide Fuel Cells, Guoliang Xiao, Fanglin Chen Jun 2014

Redox Stable Anodes For Solid Oxide Fuel Cells, Guoliang Xiao, Fanglin Chen

Faculty Publications

Solid oxide fuel cells (SOFCs) can convert chemical energy from the fuel directly to electrical energy with high efficiency and fuel flexibility. Ni-based cermets have been the most widely adopted anode for SOFCs. However, the conventional Ni-based anode has low tolerance to sulfur-contamination, is vulnerable to deactivation by carbon build-up (coking) from direct oxidation of hydrocarbon fuels, and suffers volume instability upon redox cycling. Among these limitations, the redox instability of the anode is particularly important and has been intensively studied since the SOFC anode may experience redox cycling during fuel cell operations even with the ideal pure hydrogen as …


Probing The Roles Of Polymeric Separators In Lithium-Ion Battery Capacity Fade At Elevated Temperatures, Jianchao Chen, Yongda Yan, Tao Sun, Yue Qi, Xiaodong Li May 2014

Probing The Roles Of Polymeric Separators In Lithium-Ion Battery Capacity Fade At Elevated Temperatures, Jianchao Chen, Yongda Yan, Tao Sun, Yue Qi, Xiaodong Li

Faculty Publications

The high temperature mechanical property of separators is very important for safety of lithium-ion batteries. However, the mechanical integrity of polymeric separators in lithium-ion batteries at elevated temperatures is still not well characterized. In this paper, the temperature dependent micro-scale morphology change of PP (polypropylene)-PE (polyethylene)-PP sandwiched separators (Celgard 2325) was studied by in-situ high temperature surface imaging using an atomic force microscope (AFM) coupled with power spectral density (PSD) analysis and digital image correlation (DIC) technique. Both PSD and DIC analysis results show that the PP phase significantly closes its pores by means of dilation of the nanofibrils surrounding …


A Novel Intermediate-Temperature All Ceramic Iron–Air Redox Battery: The Effect Of Current Density And Cycle Duration, Xuan Zhao, Xue Li, Yunhui Gong, Nansheng Xu, Kevin Huang May 2014

A Novel Intermediate-Temperature All Ceramic Iron–Air Redox Battery: The Effect Of Current Density And Cycle Duration, Xuan Zhao, Xue Li, Yunhui Gong, Nansheng Xu, Kevin Huang

Faculty Publications

We here report the energy storage characteristics of a new all ceramic iron–air redox battery comprising of a reversible solid oxide fuel cell as the charger/discharger and a Fe–FeOx redox couple as the chemical storage bed. The effects of current density and cycle duration on specific energy and round trip efficiency of the new battery have been systematically studied at 650°C and 550°C. The results explicitly show that current density is the most influential variable on the performance, signifying the importance of improving electrochemical performance of the reversible solid oxide fuel cell.


Design And Construction Of A Chemical Engineering (Cheme) Car Using Thermoelectrics, Timothy Barnhill, Sara Davino, Spencer Faltin, Lauryn Jamison, Christina Papadimitrio, Mccall Rogers May 2014

Design And Construction Of A Chemical Engineering (Cheme) Car Using Thermoelectrics, Timothy Barnhill, Sara Davino, Spencer Faltin, Lauryn Jamison, Christina Papadimitrio, Mccall Rogers

Senior Theses

Six chemical engineering undergraduates at the University of South Carolina formed a team to compete in the 2014 AIChE Chem-E-Car competition at the Southern Regional Student Conference in San Juan, Puerto Rico, in March. In the Chem-E-Car competition, students must design and build a vehicle powered by an unconventional form of chemical energy to carry a specified weight over a given distance (1). The group used knowledge gained through undergraduate study to construct a small-scale vehicle that is powered by a set of thermoelectric generators utilizing a heat gradient between boiling water and an ethanol-dry ice mixture (2). An iodine …


Handloaded Rifle Ammunition: A Look Into The Assembly Process, Load Development Methods, And Its Comparison To Factory Ammunition, Jeffrey Dalton Snyder May 2014

Handloaded Rifle Ammunition: A Look Into The Assembly Process, Load Development Methods, And Its Comparison To Factory Ammunition, Jeffrey Dalton Snyder

Senior Theses

The purpose of this thesis is to educate the reader on the appeal of assembling firearm ammunition from its individual components, a process known as “handloading,” in comparison to factory assembled ammunition. This is accomplished by providing the reader with the benefits of handloading with an overview of the handloading process. Then, an example of a handload development method (Ladder Test) is discussed and performed. The results from the test are then analyzed and explained. Finally, the handloaded ammunition from the test is compared by function and price to factory ammunition from three different market segments.

The project portion of …


Characterization Of 3d Interconnected Microstructural Network In Mixed Ionic And Electronic Conducting Ceramic Composites, William M. Harris, Kyle S. Brinkman, Ye Lin, Dong Su, Alex P. Cocco, Arata Nakajo, Matthew B. Degostin, Yu-Chen Karen Chen-Wiegart, Jun Wang, Fanglin Chen, Yong S. Chu, Wilson K. S. Chiu May 2014

Characterization Of 3d Interconnected Microstructural Network In Mixed Ionic And Electronic Conducting Ceramic Composites, William M. Harris, Kyle S. Brinkman, Ye Lin, Dong Su, Alex P. Cocco, Arata Nakajo, Matthew B. Degostin, Yu-Chen Karen Chen-Wiegart, Jun Wang, Fanglin Chen, Yong S. Chu, Wilson K. S. Chiu

Faculty Publications

The microstructure and connectivity of the ionic and electronic conductive phases in composite ceramic membranes are directly related to device performance. Transmission electron microscopy (TEM) including chemical mapping combined with X-ray nanotomography (XNT) have been used to characterize the composition and 3-D microstructure of a MIEC composite model system consisting of a Ce0.8Gd0.2O2 (GDC) oxygen ion conductive phase and a CoFe2O4 (CFO) electronic conductive phase. The microstructural data is discussed, including the composition and distribution of an emergent phase which takes the form of isolated and distinct regions. Performance implications are considered …


A Sinteractive Ni-Bazr0.8Y0.2O3-Δ Composite Membrane For Hydrogen Separation, Shumin Fang, Siwei Wang, Kyle S. Brinkman, Fanglin Chen Apr 2014

A Sinteractive Ni-Bazr0.8Y0.2O3-Δ Composite Membrane For Hydrogen Separation, Shumin Fang, Siwei Wang, Kyle S. Brinkman, Fanglin Chen

Faculty Publications

BaZr0.8Y0.2O3−δ (BZY) is an excellent candidate material for hydrogen permeation membranes due to its high bulk proton conductivity, mechanical robustness, and chemical stability in H2O- and CO2-containing environments. Unfortunately, the use of BZY as a separation membrane has been greatly restrained by its highly refractory nature, poor grain boundary proton conductivity, high number of grain boundaries resulting from limited grain growth during sintering, as well as low electronic conductivity. These problems can be resolved by the fabrication of a Ni–BZY composite membrane with large BZY grains, which requires the development …


Investigation Of The High-Temperature Redox Chemistry Of Sr2Fe1.5Mo0.5O6-Δ Via In Situ Neutron Diffraction, Daniel E. Bugaris, Jason P. Hodges, Ashfia Hug, W. Michael Chance, Andreas Heyden, Fanglin Chen, Hans-Conrad Zur Loye Mar 2014

Investigation Of The High-Temperature Redox Chemistry Of Sr2Fe1.5Mo0.5O6-Δ Via In Situ Neutron Diffraction, Daniel E. Bugaris, Jason P. Hodges, Ashfia Hug, W. Michael Chance, Andreas Heyden, Fanglin Chen, Hans-Conrad Zur Loye

Faculty Publications

Crystallographic structural changes were investigated for Sr2Fe1.5Mo0.5O6−δ, an electrode material for symmetric solid oxide fuel cells. The samples of this material were heated and cooled in wet hydrogen and wet oxygen atmospheres, to simulate the reducing and oxidizing conditions experienced under actual fuel cell operating conditions, and their structures and oxygen contents were determined using in situ powder neutron diffraction. The existence of a reversible tetragonal to cubic phase transition was established to occur between room temperature and 400 °C, both on heating and cooling in either oxygen or hydrogen. The …


Sr3<−3xNa3xSi3O9−1.5x (X = 0.45) As A Superior Solid Oxide-Ion Electrolyte For Intermediate Temperature-Solid Oxide Fuel Cells, Tao Wei, Preetam Singh, Yunhui Gong, John B. Goodenough, Yunhui Huang, Kevin Huang Jan 2014

Sr3<−3xNa3xSi3O9−1.5x (X = 0.45) As A Superior Solid Oxide-Ion Electrolyte For Intermediate Temperature-Solid Oxide Fuel Cells, Tao Wei, Preetam Singh, Yunhui Gong, John B. Goodenough, Yunhui Huang, Kevin Huang

Faculty Publications

We here report that a newly discovered superior oxide-ion conductor Sr3−3xNa3xSi3O9−1.5x (x = 0.45) (SNS) demonstrates full potential to be a practical solid electrolyte for intermediate temperature-solid oxide fuel cells (IT-SOFCs). It exhibits the highest oxide-ion conductivity with the lowest activation energy among all the chemically stable solid oxide-ion conductors reported. The ionic conductivity is stable over a broad range of partial pressures of oxygen (10−30 to 1 atm) for an extended period of time. A SOFC based on a 294 μm thick SNS-electrolyte produces peak power densities …