Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Mechanical Engineering

Experimental Flow Visualization For Corrugated Airfoils At Low Reynolds Number Including Development Of A Pitch And Plunge Fixture, Jeremy Ryan Sparks Jan 2011

Experimental Flow Visualization For Corrugated Airfoils At Low Reynolds Number Including Development Of A Pitch And Plunge Fixture, Jeremy Ryan Sparks

University of Kentucky Master's Theses

Micro Air Vehicles (MAV’s) have small size and extreme maneuverability which makes them ideal for surveillance. Propulsion mechanisms include propellers, rotors, and flapping airfoils. Flapping motions, along with biologically-inspired wing profiles, are of interest due to their use of natural physics. Corrugated airfoil structures appears to have poor aerodynamic performance at higher Reynolds numbers, but serve well at Re<10,000. Understanding flow structures around corrugated profiles and comparing them to a standard airfoil will aid in understanding how these corrugated profiles perform well and have been adopted by some of nature’s most acrobatic flyers. Motivation for this investigation is to compare static flow visualizations of corrugated profiles to a standard National Advisory Committee for Aeronautics (NACA) airfoil from low to high angles of attack and further observe flow structure development of a pitching and plunging flat plate at a Re<10,000 and a Strouhal number relevant to natural fliers. The static visualization was conducted at Re=1,000 with a NACA 0012 airfoil and two corrugated models. The Pitch and Plunge Fixture (PPF) developed was constructed by simplifying flapping wings as a two degree of freedom motion in plunge (translation) and pitch (rotation). Results obtained from the PPF were compared with a numerical simulation.


Perch Landing Maneuvers And Control For A Rotating-Wing Mav, Jonathan Louis Lubbers Jan 2011

Perch Landing Maneuvers And Control For A Rotating-Wing Mav, Jonathan Louis Lubbers

University of Kentucky Master's Theses

This thesis addresses flight control of the perch landing maneuver for micro-aerial vehicles. A longitudinal flight model is constructed for a pigeon-sized aircraft. In addition to a standard elevator control surface, wing-rotation also considered as a non-standard actuator for increasing low-speed aerodynamic braking. Optimal state and control trajectories for the perch landing maneuver are computed using commercial software. A neighboring optimal control law is then developed and implemented in a set of flight simulations. Simulations are run with both a quasisteady and an unsteady aerodynamic model. The effectiveness of wing rotation and of the neighboring optimal control law is discussed, …