Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

2008

University of Central Florida

PDMS

Articles 1 - 2 of 2

Full-Text Articles in Mechanical Engineering

Pressure Losses Experienced By Liquid Flow Through Pdms Microchannels With Abrupt Area Changes, Jonathan Wehking Jan 2008

Pressure Losses Experienced By Liquid Flow Through Pdms Microchannels With Abrupt Area Changes, Jonathan Wehking

Electronic Theses and Dissertations

Given the surmounting disagreement amongst researchers in the area of liquid flow behavior at the microscale for the past thirty years, this work presents a fundamental approach to analyzing the pressure losses experienced by the laminar flow of water (Re = 7 to Re = 130) through both rectangular straight duct microchannels (of widths ranging from 50 to 130 micrometers), and microchannels with sudden expansions and contractions (with area ratios ranging from 0.4 to 1.0) all with a constant depth of 104 micrometers. The simplified Bernoulli equations for uniform, steady, incompressible, internal duct flow were used to compare flow through …


A Customer Programmable Microfluidic System, Miao Liu Jan 2008

A Customer Programmable Microfluidic System, Miao Liu

Electronic Theses and Dissertations

Microfluidics is both a science and a technology offering great and perhaps even revolutionary capabilities to impact the society in the future. However, due to the scaling effects there are unknown phenomena and technology barriers about fluidics in microchannel, material properties in microscale and interactions with fluids are still missing. A systematic investigation has been performed aiming to develop "A Customer Programmable Microfluidic System". This innovative Polydimethylsiloxane (PDMS)-based microfluidic system provides a bio-compatible platform for bio-analysis systems such as Lab-on-a-chip, micro-total-analysis system and biosensors as well as the applications such as micromirrors. The system consists of an array of microfluidic …