Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Mechanical Engineering

The Role Of Diffusive Transport On Low And Intermediate Temperature Hydrocarbon Oxidation: Closed Reactor Experiments Using Equimolar N-Butane + Oxygen Premixtures At Reduced-Gravity, Howard Pearlman, Michael R. Foster Jan 2008

The Role Of Diffusive Transport On Low And Intermediate Temperature Hydrocarbon Oxidation: Closed Reactor Experiments Using Equimolar N-Butane + Oxygen Premixtures At Reduced-Gravity, Howard Pearlman, Michael R. Foster

Faculty Publications - Biomedical, Mechanical, and Civil Engineering

Experiments were conducted in a closed, spherical reactor aboard NASA's KC-135 reduced-gravity aircraft using an equimolar n-C4H10 + 0 2 premixture ( Le = 1.3) at subatmospheric · pressures to compliment model predictions and further explore the reactive-diffusive structure of cool flames and ignitions. The pressure and radial temperature histories were recorded and analyzed for different initial conditions. In addition, the visible light emission from excited formaldehyde was recorded using an intensified video camera and was observed to be radially symmetric in all cases. Unexpectedly, however, the measured temperature distributions during (and after the passage of) the cool flames and …


The Role Of Diffusive Transport On Low And Intermediate Temperature Hydrocarbon Oxidation: Numerical Simulations Using The Wang-Mou Mechanism, Howard Pearlman, Michael R. Foster Jan 2008

The Role Of Diffusive Transport On Low And Intermediate Temperature Hydrocarbon Oxidation: Numerical Simulations Using The Wang-Mou Mechanism, Howard Pearlman, Michael R. Foster

Faculty Publications - Biomedical, Mechanical, and Civil Engineering

The spatio-temporal temperature and species concentration distributions associated with low and intermediate temperature hydrocarbon oxidation are computed using a global thermo kinetic scheme augmented with diffusive transport. The scheme used for the computations was proposed by Wang and Mou and is extended to include diffusion of species and heat. The conservation equations for species and energy are then derived and solved for a one-dimensional and an axisymmetric, spherical domain for temperatures ranging from 540 to 660 Kat subatmospheric pressures. The predictions are then used to develop ignition diagrams for different Lewis ( Le) numbers. Increasing Le is found to promote …