Open Access. Powered by Scholars. Published by Universities.^{®}

- Keyword

Articles **1** - **7** of ** 7**

## Full-Text Articles in Mechanical Engineering

Numerical Simulation Of Thermo-Elasticity, Inelasticity And Rupture Inmembrane Theory, Michael Taylor

#### Numerical Simulation Of Thermo-Elasticity, Inelasticity And Rupture Inmembrane Theory, Michael Taylor

*Mechanical Engineering*

Two distinct two-dimensional theories for the modeling of thin elastic bodies are developed. These are demonstrated through numerical simulation of various types of membrane deformation. The work includes a continuum thermomechanics-based theory for wrinkled thin films. The theory takes into account single-layer sheets as well as composite membranes made of multiple lamina. The resulting model is applied to the study of entropic elastic elastomers as well as Mylar/aluminum composite films. The latter has direct application in the area of solar sails. Several equilibrium deformations are illustrated numerically by applying the theory of dynamic relaxation to a finite difference discretization ...

Predictive Control Of A Munition Using Low-Speed Linear Theory, Nathan Slegers

#### Predictive Control Of A Munition Using Low-Speed Linear Theory, Nathan Slegers

*Faculty Publications - Biomedical, Mechanical, and Civil Engineering*

"Modified linear theory provides reasonable impact predictions at high speeds. However, for typical small UAS mission speeds, less than 20-m/s impact errors were substantial due to large angles of attack and pitch rates. Low-speed linear theory was developed by including higher-order terms involving w and q that modified linear theory neglects. As a result, the angle of attack, pitch, and yaw predictions are significantly improved, leading to accurate impact predictions even at very low speeds. A predictive control scheme was developed to reduce dispersion using control surfaces near the tail. The predictive controller uses low-speed linear theory to rapidly ...

Morphologies And Kinetics Of A Dewetting Ultrathin Solid Film, Mikhail Khenner

#### Morphologies And Kinetics Of A Dewetting Ultrathin Solid Film, Mikhail Khenner

*Mathematics Faculty Publications*

The surface evolution model based on geometric partial differential equation is used to numerically study the kinetics of dewetting and dynamic morphologies for the localized pinhole defect in the surface of the ultrathin solid film with the strongly anisotropic surface energy. Depending on parameters such as the initial depth and width of the pinole, the strength of the attractive substrate potential and the strength of the surface energy anisotropy, the pinhole may either extend to the substrate and thus rupture the film, or evolve to the quasiequilibrium shape while the rest of the film surface undergoes phase separation into a ...

Enhanced Stability Of A Dewetting Thin Liquid Film In A Single-Frequency Vibration Field, Sergey Shklyaev, Mikhail Khenner, Alexei Alabuzhev

#### Enhanced Stability Of A Dewetting Thin Liquid Film In A Single-Frequency Vibration Field, Sergey Shklyaev, Mikhail Khenner, Alexei Alabuzhev

*Mathematics Faculty Publications*

Dynamics of a thin dewetting liquid film on a vertically oscillating substrate is considered. We assume moderate vibration frequency and large (compared to the mean film thickness) vibration amplitude. Using the lubrication approximation and the averaging method, we formulate the coupled sets of equations governing the pulsatile and the averaged fluid flows in the film, and then derive the nonlinear amplitude equation for the averaged film thickness. We show that there exists a window in the frequency-amplitude domain where the parametric and shear-flow instabilities of the pulsatile flow do not emerge. As a consequence, in this window the averaged description ...

Enhanced Stability Of A Dewetting Thin Liquid Film In A Single-Frequency Vibration Field, Mikhail Khenner

#### Enhanced Stability Of A Dewetting Thin Liquid Film In A Single-Frequency Vibration Field, Mikhail Khenner

*Mathematics Faculty Publications*

Dynamics of a thin dewetting liquid film on a vertically oscillating substrate is considered. We assume moderate vibration frequency and large (compared to the mean film thickness) vibration amplitude. Using the lubrication approximation and the averaging method, we formulate the coupled sets of equations governing the pulsatile and the averaged fluid flows in the film, and then derive the nonlinear amplitude equation for the averaged film thickness. We show that there exists a window in the frequency-amplitude domain where the parametric and shear-flow instabilities of the pulsatile flow do not emerge. As a consequence, in this window the averaged description ...

Morphologies And Kinetics Of A Dewetting Ultrathin Solid Film, Mikhail Khenner

#### Morphologies And Kinetics Of A Dewetting Ultrathin Solid Film, Mikhail Khenner

*Mathematics Faculty Publications*

The surface evolution model based on geometric partial differential equation is used to numerically study the kinetics of dewetting and dynamic morphologies for the localized pinhole defect in the surface of the ultrathin solid film with the strongly anisotropic surface energy. Depending on parameters such as the initial depth and width of the pinole, the strength of the attractive substrate potential and the strength of the surface energy anisotropy, the pinhole may either extend to the substrate and thus rupture the film, or evolve to the quasiequilibrium shape while the rest of the film surface undergoes phase separation into a ...

Enhanced Stability Of A Dewetting Thin Liquid Film In A Single-Frequency Vibration Field, Sergey Shklyaev, Mikhail Khenner, Alexei Alabuzhev

*Mathematics Faculty Publications*

Dynamics of a thin dewetting liquid film on a vertically oscillating substrate is considered. We assume moderate vibration frequency and large (compared to the mean film thickness) vibration amplitude. Using the lubrication approximation and the averaging method, we formulate the coupled sets of equations governing the pulsatile and the averaged fluid flows in the film, and then derive the nonlinear amplitude equation for the averaged film thickness. We show that there exists a window in the frequency-amplitude domain where the parametric and shear-flow instabilities of the pulsatile flow do not emerge. As a consequence, in this window the averaged description ...