Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 24 of 24

Full-Text Articles in Mechanical Engineering

Experimental Investigation Of Effect Of Environment Temperature On Freeze-Form Extrusion Fabrication, Xiyue Zhao, Michael S. Mason, Tieshu Huang, Ming-Chuan Leu, Robert G. Landers, Greg Hilmas, Samuel J. Easley, Michael W. Hayes Aug 2007

Experimental Investigation Of Effect Of Environment Temperature On Freeze-Form Extrusion Fabrication, Xiyue Zhao, Michael S. Mason, Tieshu Huang, Ming-Chuan Leu, Robert G. Landers, Greg Hilmas, Samuel J. Easley, Michael W. Hayes

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Freeze-form Extrusion Fabrication (FEF) is an additive manufacturing technique that extrudes ceramic loaded aqueous pastes layer by layer below the paste freezing temperature for component fabrication. A computer controlled 3-D gantry system has been developed for the FEF process. The system includes a temperature control subsystem that allows for fabrication of components below the paste freezing temperature. The low temperature environment allows for larger component fabrication. Comparisons in terms of layer thickness, self-sustaining ability, and system response were performed between 0⁰C and -20⁰C for alumina sample fabrications. The minimum deposition angles without use of support material have been determined for …


Modeling And Validation Of Temperature And Concentration For Rapid Freeze Prototyping, Frances D. Bryant, Ming-Chuan Leu Aug 2007

Modeling And Validation Of Temperature And Concentration For Rapid Freeze Prototyping, Frances D. Bryant, Ming-Chuan Leu

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Rapid Freeze Prototyping is a solid freeform fabrication process that uses water as the main build material in a cold environment to create three-dimensional parts. A eutectic sugar-water solution (C6H12O6 – H2O) has been used as a sacrificial material in order to create complex 3D parts with features such as overhangs. A study of the interaction of the build and support materials is presented in this paper. The temperature of both materials during deposition and subsequent cooling is modeled using a semi-empirical model and a theoretical model. A concentration model is used to …


Thermocouple Embedding For The Production Of A Substrate For Rapid Manufacturing, Rana Gunaratnam, Todd E. Sparks, Frank W. Liou Aug 2007

Thermocouple Embedding For The Production Of A Substrate For Rapid Manufacturing, Rana Gunaratnam, Todd E. Sparks, Frank W. Liou

Mechanical and Aerospace Engineering Faculty Research & Creative Works

This paper reports the results of a set of experiments testing methods to embed thermocouples during laser deposition. Various operating settings and shielding materials are explored. Temperature readings of the embedded thermocouples are compared with surface temperature readings taken by a non-contact digital pyrometer during the deposition process. Also, possibilities of using this information for system control are discussed.


Variable Powder Flow Rate Control In Laser Metal Deposition Processes, Lie Tang, Jianzhong Ruan, Robert G. Landers, Frank W. Liou Aug 2007

Variable Powder Flow Rate Control In Laser Metal Deposition Processes, Lie Tang, Jianzhong Ruan, Robert G. Landers, Frank W. Liou

Mechanical and Aerospace Engineering Faculty Research & Creative Works

This paper proposes a novel technique, called Variable Powder Flow Rate Control (VPFRC), for the regulation of powder flow rate in laser metal deposition processes. The idea of VPFRC is to adjust the powder flow rate to maintain a uniform powder deposition per unit length even when disturbances occur (e.g., the motion system accelerates and decelerates). Dynamic models of the powder delivery system motor and the powder transport system (i.e., five-meter pipe, powder dispenser, and cladding head) are first constructed. A general tracking controller is then designed to track variable powder flow rate references. Since the powder flow rate at …


Modeling And Simulation Of A Laser Deposition Process, Frank W. Liou, Zhiqiang Fan, Heng Pan, Kevin P. Slattery, Mary Kinsella, Joseph William Newkirk, Hsin-Nan Chou Aug 2007

Modeling And Simulation Of A Laser Deposition Process, Frank W. Liou, Zhiqiang Fan, Heng Pan, Kevin P. Slattery, Mary Kinsella, Joseph William Newkirk, Hsin-Nan Chou

Mechanical and Aerospace Engineering Faculty Research & Creative Works

A laser deposition process involves the supply of metallic powders into a laser-heated spot where the powder is melted and forms a melt puddle which quickly solidifies into a bead. In order to design an effective system, the laser beam, the powder beam, and their interactions need to be fully understood. In this paper, the laser-material interaction within the melt pool is reported using a multi-scale model: A macroscopic model to model mass, heat, and momentum transfer. Experiments were also conducted to validate the simulation model.


Numerical Simulation Of The Evolution Of Solidification Microstructure In Laser Deposition, Zhiqiang Fan, Todd E. Sparks, Frank W. Liou, Anand Jambunathan, Yaxin Bao, Jianzhong Ruan, Joseph William Newkirk Aug 2007

Numerical Simulation Of The Evolution Of Solidification Microstructure In Laser Deposition, Zhiqiang Fan, Todd E. Sparks, Frank W. Liou, Anand Jambunathan, Yaxin Bao, Jianzhong Ruan, Joseph William Newkirk

Mechanical and Aerospace Engineering Faculty Research & Creative Works

A predictive model is developed to simulate the evolution of the solidification microstructure during the laser deposition process. The microstructure model is coupled with a comprehensive macroscopic thermodynamic model. This model simulates dendritic grain structures and morphological evolution in solidification. Based on the cellular automata approach, this microstructure model takes into account the heterogeneous nucleation both within the melt pool and at the substrate/melt interface, the growth kinetics, and preferential growth directions of dendrites. Both diffusion and convection effects are included. This model enables prediction and visualization of grain structures during and after the deposition process. This model is applied …


Aqueous-Based Extrusion Fabrication Of Ceramics On Demand, Michael S. Mason, Tieshu Huang, Robert G. Landers, Ming-Chuan Leu, Greg Hilmas, Michael W. Hayes Aug 2007

Aqueous-Based Extrusion Fabrication Of Ceramics On Demand, Michael S. Mason, Tieshu Huang, Robert G. Landers, Ming-Chuan Leu, Greg Hilmas, Michael W. Hayes

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Aqueous-Based Extrusion Fabrication is an additive manufacturing technique that extrudes ceramic slurries of high solids loading layer by layer for part fabrication. The material reservoir in a previously developed system has been modified to allow for starting and stopping of extrusion process on demand. Design pros and cons are examined and a comparison between two material reservoir designs is made. Tests were conducted to determine the optimal deposition parameters for starting and stopping of the extrudate on demand. The collected test data is used to create a process model that describes the relationship between ram velocity and material extrusion rate. …


Design Of Embedded Resistance Heating Element Using Rapid Manufacturing Process, Ravi Philip, Todd E. Sparks, Frank W. Liou Aug 2007

Design Of Embedded Resistance Heating Element Using Rapid Manufacturing Process, Ravi Philip, Todd E. Sparks, Frank W. Liou

Mechanical and Aerospace Engineering Faculty Research & Creative Works

This paper discusses the design of heating element suitable for embedding in a rapid manufacturing process. A specific pattern is built using the laser deposition Process available at the University of Missouri--Rolla. A resistance heating element which is then cast into place using a castable refractory material, which acts as an electrical insulator. An application of this technology is for preheating the substrate before direct metal deposition.


Laser Deposition Cladding On-Line Inspection Using 3-D Scanner, Yu Yang, Todd E. Sparks, Jianzhong Ruan, Lan Ren, Frank W. Liou Aug 2007

Laser Deposition Cladding On-Line Inspection Using 3-D Scanner, Yu Yang, Todd E. Sparks, Jianzhong Ruan, Lan Ren, Frank W. Liou

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Laser deposition directly deposits metal cladding to fabricate and repair components. In order to finish the fabrication or repair, 3-D shape of the deposition needs to be inspected, and thus it can be determined if it has sufficient cladding to fabricate a part after deposition process. In the present hybrid system in the Laser Aided Manufacturing Lab (LAMP) at the University of Missouri - Rolla, a CMM system is used to do the inspection. A CMM requires point-by-point contact, which is time consuming and difficult to plan for an irregular deposition geometry. Also, the CMM is a separate device, which …


Cooperative Uav Formation Flying With Obstacle/Collision Avoidance, Xiaohua Wang, Vivek Yadav, S. N. Balakrishnan Jul 2007

Cooperative Uav Formation Flying With Obstacle/Collision Avoidance, Xiaohua Wang, Vivek Yadav, S. N. Balakrishnan

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Navigation problems of unmanned air vehicles (UAVs) flying in a formation in a free and an obstacle-laden environment are investigated in this brief. when static obstacles popup during the flight, the UAVs are required to steer around them and also avoid collisions between each other. In order to achieve these goals, a new dual-mode control strategy is proposed: a “safe mode” is defined as an operation in an obstacle-free environment and a “danger mode” is activated when there is a chance of collision or when there are obstacles in the path. Safe mode achieves global optimization because the dynamics of …


Coupled-Mode Theory For Stimulated Raman Scattering In High-Q/Vm Silicon Photonic Band Gap Defect Cavity Lasers, Xiaodong Yang, C. W. Wong Apr 2007

Coupled-Mode Theory For Stimulated Raman Scattering In High-Q/Vm Silicon Photonic Band Gap Defect Cavity Lasers, Xiaodong Yang, C. W. Wong

Mechanical and Aerospace Engineering Faculty Research & Creative Works

We examine the dynamics of stimulated Raman scattering in designed high-Q/Vm silicon photonic band gap nanocavities through the coupled-mode theory framework towards optically-pumped silicon lasing. The interplay of other X(3) effects such as two-photon absorption and optical Kerr, related free-carrier dynamics, thermal effects, as well as linear losses such as cavity radiation and linear material absorption are included and investigated numerically. Our results clarify the relative contributions and evolution of the mechanisms, and demonstrate the lasing and shutdown thresholds. Our studies illustrate the conditions for continuous-wave and pulsed highly-efficient Raman frequency conversion for practical realization in monolithic silicon …


Efficient Sampling For Non-Intrusive Polynomial Chaos Applications With Multiple Uncertain Input Variables, Serhat Hosder, Robert W. Walters, Michael Balch Apr 2007

Efficient Sampling For Non-Intrusive Polynomial Chaos Applications With Multiple Uncertain Input Variables, Serhat Hosder, Robert W. Walters, Michael Balch

Mechanical and Aerospace Engineering Faculty Research & Creative Works

The accuracy and the computational efficiency of a Point-Collocation Non-Intrusive Polynomial Chaos (NIPC) method applied to stochastic problems with multiple uncertain input variables has been investigated. Two stochastic model problems with multiple uniform random variables were studied to determine the effect of different sampling methods (Random, Latin Hypercube, and Hammersley) for the selection of the collocation points. The effect of the number of collocation points on the accuracy of polynomial chaos expansions were also investigated. The results of the stochastic model problems show that all three sampling methods exhibit a similar performance in terms of the the accuracy and the …


Multifrequency Eddy Current Inspection Of Corrosion In Clad Aluminum Riveted Lap Joints And Its Effect On Fatigue Life, Shridhar Natarajan, Anthony Chukwujekwu Okafor Mar 2007

Multifrequency Eddy Current Inspection Of Corrosion In Clad Aluminum Riveted Lap Joints And Its Effect On Fatigue Life, Shridhar Natarajan, Anthony Chukwujekwu Okafor

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Aging aircraft are prone to corrosion damage and fatigue cracks in riveted lap joints of fuselage skin panels. This can cause catastrophic failure if not detected and repaired. Hence detection of corrosion damage and monitoring its effect on structural integrity are essential. This paper presents multifrequency eddy current (EC) inspection of corrosion damage and machined material loss defect in clad A1 2024-T3 riveted lap joints and its effect on fatigue life. Results of eddy current inspection, corrosion product removal and fatigue testing are presented.


Product Family Design Knowledge Representation, Aggregation, Reuse, And Analysis, Jyotirmaya Nanda, Henri Thevenot, Timothy W. Simpson, Robert B. Stone, Matt R. Bohm, Steven B. Shooter Jan 2007

Product Family Design Knowledge Representation, Aggregation, Reuse, And Analysis, Jyotirmaya Nanda, Henri Thevenot, Timothy W. Simpson, Robert B. Stone, Matt R. Bohm, Steven B. Shooter

Mechanical and Aerospace Engineering Faculty Research & Creative Works

A flexible information model for systematic development and deployment of product families during all phases of the product realization process is crucial for product-oriented organizations. In current practice, information captured while designing products in a family is often incomplete, unstructured, and is mostly proprietary in nature, making it difficult to index, search, refine, reuse, distribute, browse, aggregate, and analyze knowledge across heterogeneous organizational information systems. To this end, we propose a flexible knowledge management framework to capture, reorganize, and convert both linguistic and parametric product family design information into a unified network, which is called a networked bill of material …


Robust/Optimal Temperature Profile Control Of A High-Speed Aerospace Vehicle Using Neural Networks, Vivek Yadav, Radhakant Padhi, S. N. Balakrishnan Jan 2007

Robust/Optimal Temperature Profile Control Of A High-Speed Aerospace Vehicle Using Neural Networks, Vivek Yadav, Radhakant Padhi, S. N. Balakrishnan

Mechanical and Aerospace Engineering Faculty Research & Creative Works

An approximate dynamic programming (ADP)-based suboptimal neurocontroller to obtain desired temperature for a high-speed aerospace vehicle is synthesized in this paper. a 1-D distributed parameter model of a fin is developed from basic thermal physics principles. ldquoSnapshotrdquo solutions of the dynamics are generated with a simple dynamic inversion-based feedback controller. Empirical basis functions are designed using the ldquoproper orthogonal decompositionrdquo (POD) technique and the snapshot solutions. a low-order nonlinear lumped parameter system to characterize the infinite dimensional system is obtained by carrying out a Galerkin projection. an ADP-based neurocontroller with a dual heuristic programming (DHP) formulation is obtained with a …


Method Of Metallurgically Bonding Articles And Article Therefor, Hai-Lung Tsai, P.-C. Wang Jan 2007

Method Of Metallurgically Bonding Articles And Article Therefor, Hai-Lung Tsai, P.-C. Wang

Mechanical and Aerospace Engineering Faculty Research & Creative Works

An article suitable for metallurgical bonding having a first part having a lower surface, and a second part having an upper surface is disclosed. The lower surface of the first part is disposed at the upper surface of the second part to provide for a faying surface thereat. The faying surface has a plurality of channels having a depth equal to or greater than about 1 micron and equal to or less than about 1000 microns. The article is suitable for metallurgical bonding at the faying surface.


Determination Of Laser Absorption Coefficients Of Gas Mixtures Using An Ab Initio Md Model, Zhi Liang, Hai-Lung Tsai, Lan Jiang Jan 2007

Determination Of Laser Absorption Coefficients Of Gas Mixtures Using An Ab Initio Md Model, Zhi Liang, Hai-Lung Tsai, Lan Jiang

Mechanical and Aerospace Engineering Faculty Research & Creative Works

In an Effort to Study the Laser Induced Dissociation of Gas Mixtures for an Ongoing Research Project on Diamond Thin Film Coating using Multiple Lasers, It is Necessary to Determine the Absorption Coefficient of Laser Energy by CO2 Gas. an Ab Initio Molecular Dynamics (AIMD) Model is Used to Determine the Laser Absorption Coefficient of CO2 Gas as a Function of Laser Wavelength and Gas Temperature. the Translational, Rotational, and Vibration Motions of Molecules Are All Taken into Account in Our Model. the Intra-Molecular Potential Energy is Obtained by Solving the Kohn-Sham Equation. the Projector-Augmented Wave (PAW) Exchange-Correlation Potential Function …


Method And Apparatus For Improved Cooling Of Restistance Welding Cap, M. J. Karagoulis, R. Stevenson, Hai-Lung Tsai, P.-C. Wang Jan 2007

Method And Apparatus For Improved Cooling Of Restistance Welding Cap, M. J. Karagoulis, R. Stevenson, Hai-Lung Tsai, P.-C. Wang

Mechanical and Aerospace Engineering Faculty Research & Creative Works

According to the invention a hollow cylindrical shank of electrically conducting metal is connected to a resistance welder. A coolant supply tube passes through the shank and has an interior coolant supply passage. The coolant supply tube has an outer diameter less than the inner diameter of the hollow cylindrical shank. A weld cap seats on the shank and has a cap tip and a cap skirt that depends from the cap tip and is attached to the shank. An underside of the cap tip faces the shank and the supply tube. A coolant receiving bore formed into the underside …


Optimal Neuro-Controller Synthesis For Impulse-Driven System, Xiaohua Wang, S. N. Balakrishnan Jan 2007

Optimal Neuro-Controller Synthesis For Impulse-Driven System, Xiaohua Wang, S. N. Balakrishnan

Mechanical and Aerospace Engineering Faculty Research & Creative Works

This paper presents a new controller design technique for systems driven with impulse inputs. Necessary conditions for optimal impulse control are derived. A neural network structure to solve the resulting equations is presented. The solution concepts are illustrated with a few example problems that exhibit increasing levels of difficulty. Two linear problems-one scalar and one vector-and a benchmark nonlinear problem-Van Der Pol oscillator-are used as case studies. Numerical results show the efficacy of the new solution process for impulse driven systems. Since the theoretical development and the design technique are free from restrictive assumptions, this technique is applicable to many …


Acoustic Emission Detection And Prediction Of Fatigue Crack Propagation In Composite Patch Repairs Using Neural Networks, Navdeep Singh, Navrag Singh, Anthony Chukwujekwu Okafor Jan 2007

Acoustic Emission Detection And Prediction Of Fatigue Crack Propagation In Composite Patch Repairs Using Neural Networks, Navdeep Singh, Navrag Singh, Anthony Chukwujekwu Okafor

Mechanical and Aerospace Engineering Faculty Research & Creative Works

An aircraft is subjected to severe structural and aerodynamic loads during its service life. These loads can cause damage or weakening of the structure especially for aging military and civilian aircraft, thereby affecting its load carrying capabilities. Hence composite patch repairs are increasingly used to repair damaged aircraft metallic structures to restore its structural efficiency. This paper presents the results of Acoustic Emission (AE) monitoring of crack propagation in 2024-T3 Clad aluminum panels repaired with adhesively bonded octagonal, single sided boron/epoxy composite patch under tension-tension fatigue loading. Crack propagation gages were used to monitor crack initiation. The identified AE sensor …


Method Of Metallurgically Bonding Articles And Article Therefor, L. G. Hector Jr, Hai-Lung Tsai, P.-C. Wang Jan 2007

Method Of Metallurgically Bonding Articles And Article Therefor, L. G. Hector Jr, Hai-Lung Tsai, P.-C. Wang

Mechanical and Aerospace Engineering Faculty Research & Creative Works

An article suitable for arc-welded metallurgical bonding having a first part having a lower surface, and a second part having an upper surface is disclosed. The lower surface of the first part is disposed at the upper surface of the second part to provide for a faying surface thereat. The faying surface has a plurality of channels with a depth equal to or greater than about 1 micron and equal to or less than about 1000 microns. The article is suitable for arc-welded metallurgical bonding at the faying surface. The plurality of channels has a repetitive pattern of channels arranged …


Simple Penning Ion Source For Laboratory Research And Development Applications, Joshua L. Rovey, Brandon P. Ruzic, Thomas J. Houlahan Jan 2007

Simple Penning Ion Source For Laboratory Research And Development Applications, Joshua L. Rovey, Brandon P. Ruzic, Thomas J. Houlahan

Mechanical and Aerospace Engineering Faculty Research & Creative Works

A simple Penning ion generator (PIG) that can be easily fabricated with simple machining skills and standard laboratory accessories is described. The PIG source uses an iron cathode body, samarium cobalt permanent magnet, stainless steel anode, and iron cathode faceplate to generate a plasma discharge that yields a continuous 1 mA beam of positively charged hydrogen ions at 1 mTorr of pressure. This operating condition requires 5.4 kV and 32.4 W of power. Operation with helium is similar to hydrogen. The ion source is being designed and investigated for use in a sealed-tube neutron generator; however, this ion source is …


Fracture Toughness Of Ceramic Moulds For Investment Casting With Ice Patterns, Qingbin Liu, Ming-Chuan Leu, Von Richards Jan 2007

Fracture Toughness Of Ceramic Moulds For Investment Casting With Ice Patterns, Qingbin Liu, Ming-Chuan Leu, Von Richards

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Ice patterns can be used to make ceramic investment moulds for metal castings. Owing to the characteristics of ice, the ceramic mould must be made at subzero temperatures and consequently, requires a different formulation than shells built at room temperature. Success of this process depends greatly on the fracture toughness of mould materials. The present paper describes the experimental results of fracture toughness of mould materials processed from different compositions. The Taguchi method was used to reduce the trial runs. The parameters considered included the ratio of fibre containing fused silica and aluminosilicate powders, the volume of binder and the …


Method And System For Far-Field Microscopy To Exceeding Diffraction-Limit Resolution, C. Ya, Hai-Lung Tsai Jan 2007

Method And System For Far-Field Microscopy To Exceeding Diffraction-Limit Resolution, C. Ya, Hai-Lung Tsai

Mechanical and Aerospace Engineering Faculty Research & Creative Works

The bio-sample (e.g., a live cell) is labeled with a proper number of nanoparticles. Each nanoparticle is pre-co-doped with a controlled ratio of fluorophore donors and acceptors. Two laser pulses are applied to the bio-sample. The first laser pulse has a center wavelength near the peak of absorption spectrum of acceptors. The intensity of first laser pulse is adjusted such that FRET saturation occurs near the center of the focal spot. The focal spot of the first laser pulse is a diffraction-limited Airy disk that has the highest laser intensity in the center of the focal spot. The second laser …