Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Mechanical Engineering

Efficient Inversion Of Fourier And Laplace Domain Boundary Element Solutions For Elastodynamic Scattering , Joel Kevin Ness Jan 1994

Efficient Inversion Of Fourier And Laplace Domain Boundary Element Solutions For Elastodynamic Scattering , Joel Kevin Ness

Retrospective Theses and Dissertations

In ultrasonic nondestructive testing, the actual time domain signature of a scattered wave due to a pulsed input is the common observable (via oscilloscope) quantity. Numerically simulated solutions are thus desirable in the time domain. These can be obtained by working directly in the time domain or by inversions of integral transform solutions in the frequency (Fourier) or Laplace domains. Direct time solutions are suitable for short times but generally deteriorate for longer times. Alternately, the transform techniques generally require solutions over a wide spectrum in the transform variable to provide accurate inversions back to the time domain. However, without ...


Multigrid Acceleration Of Time-Dependent Solutions Of Navier-Stokes Equations, Sarafa Oladele Ibraheem Jan 1994

Multigrid Acceleration Of Time-Dependent Solutions Of Navier-Stokes Equations, Sarafa Oladele Ibraheem

Mechanical & Aerospace Engineering Theses & Dissertations

Recent progress in Computational Fluid Dynamics is encouraging scientists to look at fine details of flow physics of problems in which natural unsteady phenomena have hitherto been neglected. The acceleration methods that have proven very successful in steady state computations can be explored for time dependent computations. In this work, an efficient multigrid methods is developed to solve the time-dependent Euler and Navier-Stokes equations. The Beam-Warming ADI method is used as the base algorithm for time stepping calculations. Application of the developed algorithm proved very efficient in selected steady and unsteady test problems. For instance, the inherent unsteadiness present in ...