Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

All Theses

Discipline
Keyword
Publication Year

Articles 1 - 30 of 148

Full-Text Articles in Mechanical Engineering

Experimental Study On The Impact Of Low Thermal Inertia Thermal Barrier Coatings On Ppci-Diffusion Gci Combustion, Kunal Vedpathak Dec 2023

Experimental Study On The Impact Of Low Thermal Inertia Thermal Barrier Coatings On Ppci-Diffusion Gci Combustion, Kunal Vedpathak

All Theses

The application of thermal barrier coatings (TBCs) has been studied in homogenous charge compression ignition (HCCI), conventional diesel combustion (CDC), and spark ignition (SI). Gasoline compression ignition (GCI) combines the low soot and NOx emissions of HCCI with combustion controllability through fuel stratification. GCI has become an interesting prospect due to the reduction in gasoline consumption due to the electrification and hybridization of the light-duty sector. It can be used as a preferred combustion mode in heavy-duty engines to reduce emissions with minimal modifications. GCI exhibits better combustion efficiency than HCCI. Advances in material technology have combined low thermal conductivity …


The Generation Of A Physics Informed Machine Learning Model To Predict Defect Evolution In Materials & On The Thermally Activated Regime Of Dislocation Motion: A Simulation Driven Study On The Mechanical Behavior Of Crystals, Liam Myhill Dec 2023

The Generation Of A Physics Informed Machine Learning Model To Predict Defect Evolution In Materials & On The Thermally Activated Regime Of Dislocation Motion: A Simulation Driven Study On The Mechanical Behavior Of Crystals, Liam Myhill

All Theses

Line defects in crystals, known as dislocations, govern the mechanisms of plastic deformation at the micro-meso scale. The study of dislocations has proliferated the field of materials science and engineering for since the 1950’s, and modern studies show increasing utilization of computational methods to model the evolution of line defects in material systems. In keeping with modern research practice, the studies herewith demonstrate the use of advanced computing to generate models which can be used to better understand the behaviors of dislocations within crystal matrices. An advanced high-throughput model for a physically informed machine learning graph neural network (PIML-GNN) is …


Safe Navigation Of Quadruped Robots Using Density Functions, Andrew Zheng Dec 2023

Safe Navigation Of Quadruped Robots Using Density Functions, Andrew Zheng

All Theses

Safe navigation of mission-critical systems is of utmost importance in many modern autonomous applications. Over the past decades, the approach to the problem has consisted of using probabilistic methods, such as sample-based planners, to generate feasible, safe solutions to the navigation problem. However, these methods use iterative safety checks to guarantee the safety of the system, which can become quite complex. The navigation problem can also be solved in feedback form using potential field methods. Navigation function, a class of potential field methods, is an analytical control design to give almost everywhere convergence properties, but under certain topological constraints and …


Temperature Gradient Effect On Solid-Liqid Interface Properties Of Al-Cu Alloy: A Molecular Dynamics Study, Prashant Kumar Jha Dec 2023

Temperature Gradient Effect On Solid-Liqid Interface Properties Of Al-Cu Alloy: A Molecular Dynamics Study, Prashant Kumar Jha

All Theses

Aluminum-copper (Al-Cu) alloys are widely used in the aerospace industry due to their favorable strength-to-weight ratio, good fatigue resistance, and corrosion resistance. These properties make Al-Cu alloys an excellent choice for aircraft structural components that require high strength and low weight. Additive manufacturing (AM), also known as 3D printing, has emerged as a promising processing method for Al-Cu alloys in aerospace manufacturing. AM enables the production of lightweight optimized geometries difficult to manufacture through conventional subtractive methods. AM also reduces material waste by only depositing material where needed in the part geometry. The rapid solidification conditions in AM processes motivate …


Model Of Surface Waves On A Viscoelastic Material In A Cylindrical Container With Edge Constraints, Phillip Wilson Dec 2023

Model Of Surface Waves On A Viscoelastic Material In A Cylindrical Container With Edge Constraints, Phillip Wilson

All Theses

A theoretical model is developed for the resonant frequencies and mode shapes of pinned edge surface waves on a viscoelastic fluid contained in a finite depth cylindrical container. A boundary integral approach is used to map the governing equations to the domain boundary. The surface waves obey an eigenvalue operator equation that depends on four dimensionless parameters: the cylinder aspect ratio, the Bond number, the Ohnesorge number, and the elastocapillary number. A solution is constructed using a Rayleigh-Ritz variational procedure over a constrained function space, which is able to effectively incorporate the pinned edge boundary condition. Mode shapes are defined …


Vibration Fatigue Of Leaded Solder Joint Interconnects For Pcb Electronics, John Crowder Aug 2023

Vibration Fatigue Of Leaded Solder Joint Interconnects For Pcb Electronics, John Crowder

All Theses

With the increasing prevalence of electronic equipment worldwide, there is also a decrease in the size of the components on their printed circuit boards (PCBs), leading to an increase in the density of these components. A significant amount of failure in electronic equipment is vibration fatigue of solder joints and their attachments. However, the complexity of these PCBs and their components has made finite element modeling (FEM) more complex, adding considerable time to create and analyze a model.

This paper aims to provide a literature review for the vibration fatigue of leaded solder components, create a test setup, and validate …


Characterization Of Mechanically Recycled Polylactic Acid (Pla) Filament For 3d-Printing By Evaluating Mechanical, Thermal, And Chemical Properties And Process Performance, Mahsa Shabani Samghabady Aug 2023

Characterization Of Mechanically Recycled Polylactic Acid (Pla) Filament For 3d-Printing By Evaluating Mechanical, Thermal, And Chemical Properties And Process Performance, Mahsa Shabani Samghabady

All Theses

Polylactic acid (PLA) is a biopolymer made from renewable resources such as sugar and corn. PLA filament is a popular material used in Fused Deposition Modeling (FDM) 3D-printing. While this material has many advantages, all the failed parts, support structures, rafts, nozzle tests, and the many prototype iterations during the 3D-printing process contribute to the plastic pollution and release of greenhouse gases. Although PLA is biodegradable, it can take years to degrade in landfills. Instead of throwing away PLA waste and buying new filaments, PLA can be recycled. Amongst the different recycling technologies, mechanical recycling is the most environmentally friendly. …


The Effect Of Deployment And Optimal Dispatch Of Shared Electric Shuttles On The Energy Efficiency Of Campus Transit, Robert Smith Aug 2023

The Effect Of Deployment And Optimal Dispatch Of Shared Electric Shuttles On The Energy Efficiency Of Campus Transit, Robert Smith

All Theses

A problem facing most public transit systems is low energy efficiency and the continued cycling of large transport vehicles such as buses at low occupancy when low demand for transport exists, wasting energy to no benefit. To remedy this issue, we propose a hybrid system consisting of existing diesel buses and automated electric shuttles to augment the system during off-peak hours. Due to their smaller size, higher occupancy, and more efficient powertrains, these shuttles could reduce the system energy used per passenger-mile-traveled. Automation removes the labor cost of drivers and, thus, eliminates the need to employ more drivers for the …


The Influence Of Diversity Dimensions On Student’S Collaboration Success: What It Means For Workforce Development In Manufacturing, Oyinkansola Adeite Aug 2023

The Influence Of Diversity Dimensions On Student’S Collaboration Success: What It Means For Workforce Development In Manufacturing, Oyinkansola Adeite

All Theses

Manufacturing productivity is measured by labor productivity which is the hourly output of the manufacturing economy. The recent reduction in productivity numbers by the United States Bureau of Labor Statistics emphasizes the need for workforce development. With globalization and technological advancements, diversity has emerged as a critical aspect for the workplace. By encompassing dimensions such as education, race, and age, diversity creates a tapestry of unique perspectives and experiences. This study’s aim is to figure out the effect of a diversity dimension on team performance using intelligent systems, and in addition, if extra dimensions of diversity further impact team performance. …


Life Cycle Energy Assesment Of Advanced Fiber Reinforced Composite Design And Manufacturing Methodologies, Urjit Lad Aug 2023

Life Cycle Energy Assesment Of Advanced Fiber Reinforced Composite Design And Manufacturing Methodologies, Urjit Lad

All Theses

Automotive industry at large is focused on vehicle light-weighting since a 6%-8% increase in fuel efficiency can be achieved with a 10% reduction in vehicle weight [1]. With the growing demand for cost-effective and sustainable light weighting of automobile structures, interest has increased in the application of fiber reinforced plastic (FRP) composites for use in the Body-in-White (BiW), which can account for up to 40% of the total vehicle weight. Traditional FRP composite manufacturing processes like vacuum assisted resin transfer molding, autoclave consolidation or use of automated fiber placement have been successfully used for marine and aerospace applications. However, these …


Influence Of Swirl And Turbulence In The Particle Removal Using Fog In A Pipe Flow, Nisarg T. Patel Aug 2023

Influence Of Swirl And Turbulence In The Particle Removal Using Fog In A Pipe Flow, Nisarg T. Patel

All Theses

Fog-and-tube scrubbers are employed to remove harmful ultrafine aerosols, such as Diesel particulate matter (DPM), from an airflow. The underlying principle of this removal process involves enlarging the aerosol particles by coagulating them with fog drops, which are subsequently eliminated through inertial impaction onto the tube wall. Previous research conducted by Tabor et al. (2021) demonstrated an increase in scavenging of ultrafine DPM particles, ranging from 11.5 nm to 154 nm, by as large as 45% over the no fog case. This finding is crucial in addressing the challenges associated with conventional filtration methods for capturing ultrafine particles.

The present …


Dynamics And Steering Of A Vibration-Driven Bristle Bot In A Pipe System, Ian Stewart Aug 2023

Dynamics And Steering Of A Vibration-Driven Bristle Bot In A Pipe System, Ian Stewart

All Theses

Soft vibrational robots are robots that incorporate compliant structures into their design and are driven by oscillating actuators. A recent, popular version of a soft vibrational robot is the bristle bot, which uses flexible bristles and a vibration motor to propel itself across surfaces and through pipes. This motion is primarily driven by stick-slip dynamics resulting from asymmetric frictional forces applied at the bristle tips. Depending on the frequency of vibration of the motor, the robot experiences various resonance regions allowing it to maneuver in different directions. Attaching bristles to all sides of the robot and placing it in a …


The Characterization Of Atmospheric Turbulence And Its Effect On Laser Beam Propagation, Michael Cox May 2023

The Characterization Of Atmospheric Turbulence And Its Effect On Laser Beam Propagation, Michael Cox

All Theses

Having a controlled environment to measure atmospheric turbulence is essential to understanding its effects on different laser beam characteristics. The Clemson Variable Turbulence Generator (VTG) has the capability to propagate a laser beam up to 100 m and be able to dial many turbulence settings up to a heat flux of 357 W/m2. A high-speed camera, power detector, and high-resolution temperature probes characterize the VTG with theoretical turbulence spectrums. The exponent associated with the Rayleigh-Bénard (RB) temperature structure constant equation is studied. Two different laser beam profiles are used throughout this work: Gaussian and Asymmetric Perfect Vortex (APV). …


A Predictive Analysis Of The Influence Of Thickness And Length On The Curvature Of Square Bistable Carbon Fiber Reinforced Composite Laminates, Stephan Terry May 2023

A Predictive Analysis Of The Influence Of Thickness And Length On The Curvature Of Square Bistable Carbon Fiber Reinforced Composite Laminates, Stephan Terry

All Theses

This thesis presents a predictive analysis of the stability of square bistable carbon fiber reinforced composite laminates under various loading conditions. The stability of these laminates is essential to their performance and longevity and is influenced by factors such as thickness and length. Analytical and numerical techniques are used to model the behavior of these laminates, and experimental tests are conducted to validate the models. The findings of this research have implications for the design and optimization of square bistable carbon fiber reinforced composites.

The study investigates the relationships between the side length and thickness of square laminates for bistability. …


Laser Stabilization Through Optical Turbulence, Liam Vanderschaaf May 2023

Laser Stabilization Through Optical Turbulence, Liam Vanderschaaf

All Theses

Laser jitter presents a significant issue in the fields of laser communication and sensing. There are two main categories of positional noise in regards to the instantaneous centroid of a laser propagating over long distances: jitter resulting from optical turbulence and jitter resulting from mechanical vibrations. Optical turbulence was generated using Clemson University’s Variable Turbulence Generator (VTG). The VTG is capable of creating a desired level of optical turbulence that is comparable to atmospheric conditions with fried parameters greater than 0.3 cm. A gaussian laser was transmitted through the VTG and a system of Fast Steering Mirrors and Position Sensing …


Design And Data-Driven Identification Of A Quadruped Robot, Dakota Rufino May 2023

Design And Data-Driven Identification Of A Quadruped Robot, Dakota Rufino

All Theses

The existence of nonlinearities and the lack of sufficient equations are fundamental challenges in modeling, analyzing, and controlling complex systems. However, recent developments revolutionizing the study of dynamical systems. An emerging method in nonlinear dynamical systems is the Koopman operator theory, which provides us with key advantages in performing the modeling, prediction, and control of nonlinear systems. The linear system representation allows us to leverage linear stability analysis. The first section of this thesis briefly covers the construction of a quadrupedal robot, a sufficiently complex nonlinear dynamical system, for the use of analyzing data-driven modeling techniques. The second section details …


Koopman Operator Theory And The Applied Perspective Of Modern Data-Driven Systems, Alex Krolicki Dec 2022

Koopman Operator Theory And The Applied Perspective Of Modern Data-Driven Systems, Alex Krolicki

All Theses

Recent theoretical developments in dynamical systems and machine learning have allowed researchers to re-evaluate how dynamical systems are modeled and controlled. In this thesis, Koopman operator theory is used to model dynamical systems and obtain optimal control solutions for nonlinear systems using sampled system data. The Koopman operator is obtained using data generated from a real physical system or from an analytical model which describes the physical system under nominal conditions. One of the critical advantages of the Koopman operator is that the response of the nonlinear system can be obtained from an equivalent infinite dimensional linear system. This is …


Multiple Objective Function Optimization And Trade Space Analysis, Yifan Xu Dec 2022

Multiple Objective Function Optimization And Trade Space Analysis, Yifan Xu

All Theses

Optimization can assist in obtaining the best possible solution to a design problem by varying related variables under given constraints. It can be applied in many practical applications, including engineering, during the design process. The design time can be further reduced by the application of automated optimization methods. Since the required resource and desired benefit can be translated to a function of variables, optimization can be viewed as the process of finding the variable values to reach the function maxima or minima. A Multiple Objective Optimization (MOO) problem is when there is more than one desired function that needs to …


Effects Of Polymer Side-Group Size On Interfacial Mechanics Of Graphene-Polymer Nanocomposites, Grace Brokaw Dec 2022

Effects Of Polymer Side-Group Size On Interfacial Mechanics Of Graphene-Polymer Nanocomposites, Grace Brokaw

All Theses

Graphene-reinforced polymer nanocomposites possess excellent mechanical, thermal, and electrical properties, which make them promising candidates for various applications. Favorable interfacial interactions and mechanics between graphene sheets and polymer matrices are often essential to achieve superior mechanical properties. Nevertheless, it remains largely elusive how molecular features of polymer systems, particularly the side-group size of polymer chains, affect the interfacial mechanics between graphene sheets and polymer matrices, primarily due to challenges in well controlling these features in experiments. On the other hand, exploring their roles in the mechanical properties of graphene-polymer nanocomposites is very expensive to study with all-atomistic molecular dynamics (MD) …


Supporting Us Army Next-Generation Ground Vehicle Simulation Modeling Using An Integrated Ontology Suite, Edward Louis Dec 2022

Supporting Us Army Next-Generation Ground Vehicle Simulation Modeling Using An Integrated Ontology Suite, Edward Louis

All Theses

The development of the US Army’s next-generation of ground vehicle systems is supported by simulations that predict vehicle performance and inform engineering design choices in the design and acquisition process. In this paper, we describe the development of an Integrated Ontology Suite to support modeling and simulation of next generation military ground vehicles. The ontology suite is intended to address model reuse challenges and increase the shared understanding of ground vehicle system simulations. It is intended to function in a Model Library structure that stores, documents, assembles, and executes vehicle simulations. The ontology suite consists of four domain ontologies: Vehicle …


Utilizing Systematic Design And Shape Memory Alloys To Enhance Actuation Of Modular High-Frequency Origami Robots, Jessica M. Den Haese Dec 2022

Utilizing Systematic Design And Shape Memory Alloys To Enhance Actuation Of Modular High-Frequency Origami Robots, Jessica M. Den Haese

All Theses

Shape memory alloys (SMAs) describe a group of smart metallic materials that can be deformed by external magnetic, thermal, or mechanical influence and then returned to a predetermined shape through the cycling of temperature or stress. They have several advantages, such as having excellent mechanical properties, being low cost, and being easily manufactured, while also providing a compact size, completely silent operation, high work density, and requiring less maintenance over time. SMAs can undergo sold-to-solid phase transformations, and it is because of these phase transformations that they can experience shape memory effect (SME); or the ability to recover from a …


An Application Of Optimized Bistable Laminates As A Low Velocity, Low Impact Mechanical Deterrent, Graham Lancaster Dec 2022

An Application Of Optimized Bistable Laminates As A Low Velocity, Low Impact Mechanical Deterrent, Graham Lancaster

All Theses

This research considers the problem of using bistable laminates as a mechanical deterrent to the impending impact of a particle. The structure will be controlled through an algorithm that will utilize piezoelectric devices to activate them in unison with the bistable laminate to successfully deter. A novel experimental setup will be constructed to ensure that the bistable laminate stays fixed when acting as a mechanical deterrent. Piezoelectricity is the main driving force of the bistable laminate to morph and this study will use a Macro Fiber Composite (MFC) actuator that contains piezoelectric ceramic rods in a patch to transfer electrical …


A Benchtop Robotic Automation Approach For Manufacturing Prefilled Syringes, Yehua Zhong Nov 2022

A Benchtop Robotic Automation Approach For Manufacturing Prefilled Syringes, Yehua Zhong

All Theses

Automation and robotics have become a staple in the biological manufacturing sector due to their ability to efficiently work without operator inputs, with a high degree of accuracy and repeatability. Industrial robotic arms, in particular, present themselves as valuable tools for biological manufacturing scenarios that require customized solutions due to their ease of programming and flexibility. The traditional hospital-focused healthcare system was organically developed to address acute conditions, however, in recent years, due to the unprecedented occurrence of emergencies happening more frequently, fast and efficient drug production becomes important [17]. This thesis represents the use of a benchtop robot and …


Tunable Filtration Of Particles During Dip-Coating, Connor Copeland Sep 2022

Tunable Filtration Of Particles During Dip-Coating, Connor Copeland

All Theses

When a solid substrate is withdrawn from a liquid bath a thin coating is deposited whose thickness is given by the Landau-Levich-Derjaguin (LLD) law. We perform an experimental study of dip coating of particle suspensions showing that particles of a given size can become entrained in the meniscus by the competition between viscous and surface tension forces. This is called capillary filtration and can be used as a tunable dynamic filter. For single particle suspensions, filtration can be in terms of either clumps or single particles, with the relevant entrainment points depending upon the rheology of the working fluid, either …


Creep Behavior Of A Ti-Based Multi-Principal Element Alloy, Benjamin Elbrecht Aug 2022

Creep Behavior Of A Ti-Based Multi-Principal Element Alloy, Benjamin Elbrecht

All Theses

Abstract

The understanding of microstructural damage mechanisms is the foundation of better understanding existing materials and future material development. There are significant challenges to measuring these damage mechanisms in-situ as continuous observation of the state of the microstructure is difficult or impossible for many experimental setups. This thesis presents a method for measuring grain boundary sliding (GBS) and local strain concentrations in-situ via a Heaviside function based algorithm. GBS is the shearing of two grains along their shared grain boundary and is a common damage mechanism in creep which presents as a discontinuity that can be measured with a Heaviside …


Mechanizing The Removal Of Soil Between Peach Trees Planted On Berms, Coleman Scroggs Aug 2022

Mechanizing The Removal Of Soil Between Peach Trees Planted On Berms, Coleman Scroggs

All Theses

Armillaria root rot (ARR), primarily caused by the soilborne fungus Desarmillaria tabescens, has become the number one cause for peach tree decline in the Southeastern United States. Research has shown that planting peach trees on shallow berms and excavating the soil around the root collar two years after planting lessens the effects of ARR. However, berms make orchard operations such as pruning, thinning, and harvesting more cumbersome and cause cultural concerns as channels of water at their base can lead to erosion and the slope of the berms leads to herbicide and fertilizer runoff. The objective of this research was …


Computational Tradespace Exploration, Analysis, And Decision-Making: A Proposed Framework For Organizational Self-Assessment, Julia Daniels Aug 2022

Computational Tradespace Exploration, Analysis, And Decision-Making: A Proposed Framework For Organizational Self-Assessment, Julia Daniels

All Theses

The ability to assess technical feasibility, project risk, technical readiness, and realistic performance expectations in early-phase conceptual design is a challenging mission-critical task for large procurement projects. At present, there is not a well-defined framework for evaluating current practices of organizations performing computational trade studies. One such organization is the US Army Ground Vehicle Systems Center (GVSC). When defining requirements and priorities for the next-generation autonomy-enabled ground vehicle system, GVSC is faced with the challenge of an increasingly complex programmatic tradespace due to emerging complexities of ground vehicle systems. This thesis aims to document and evaluate tradespace processes, methods, and …


Soft Robotic Arms For Fall Mitigation: Design, Control And Evaluation, Param Malhotra Aug 2022

Soft Robotic Arms For Fall Mitigation: Design, Control And Evaluation, Param Malhotra

All Theses

Most fall mitigation devices present a heavy system that avoid injuries to the user by preventing the impact of a fall. They are dependent on the user capability or on the probability that the user falls in the assumed manner the system was designed for. Often that is not the case, hence this project initiates a novel concept of using soft robotic arms to prevent falls from happening in the first place itself and save the user from any injuries. This thesis describes the prototype and development of a soft continuum robotic backpack system. The system can validate its use …


Examining The Different Snap-Through Characteristics Of Bistable Cfrp Composite Laminates, Vishrut Deshpande May 2022

Examining The Different Snap-Through Characteristics Of Bistable Cfrp Composite Laminates, Vishrut Deshpande

All Theses

Bistable carbon fiber composites, whose bistability arises from having asymmetric fiber layouts in different layers, have shown immense potential for use in shape morphing and adaptive structure applications. While many studies in this field focus on these composite laminates’ external shapes at the two stable states, their snap-through behavior of shifting from one stable shape to the other remains a critical aspect to be investigated in complete detail. Moreover, symmetric loading conditions have been extensively studied based on the classical lamination theory, but the asymmetric loading conditions received far less attention. Therefore, this study examines an asymmetric, localized point load …


Predictive Performance And Teaming Via The Mist-C Ocean Hierarchy Utilizing Personality And Skills, Brighton H. Owen May 2022

Predictive Performance And Teaming Via The Mist-C Ocean Hierarchy Utilizing Personality And Skills, Brighton H. Owen

All Theses

This thesis seeks to establish and define the individual, the team as an entity, and qualify various metrics to predict team performance. When several individuals come together, they form a team that is often capable of designing and developing concepts beyond the individual on their own by methods of task dispersion, goal orientation, communication, and more. With these teams comes growth and increased performance leading to more efficient processes and better metrics by which performance may be measured. To achieve this, 34 engineering students in the AerosPACE senior design program, which lasted two semesters, were asked to complete surveys in …