Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 19 of 19

Full-Text Articles in Mechanical Engineering

Heat Treatments For Minimization Of Residual Stresses And Maximization Of Tensile Strengths Of Scalmalloy® Processed Via Directed Energy Deposition, Rachel Boillat-Newport, Sriram Praneeth Isanaka, Jonathan Kelley, Frank Liou Mar 2024

Heat Treatments For Minimization Of Residual Stresses And Maximization Of Tensile Strengths Of Scalmalloy® Processed Via Directed Energy Deposition, Rachel Boillat-Newport, Sriram Praneeth Isanaka, Jonathan Kelley, Frank Liou

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Scalmalloy® is an Al-Mg-Sc-Zr-Based Alloy Specifically Developed for Additive Manufacturing (AM). This Alloy is Designed for Use with a Direct Aging Treatment, as Recommended by the Manufacturer, Rather Than with a Multistep Treatment, as Often Seen in Conventional Manufacturing. Most Work with Scalmalloy® is Conducted using Powder Bed Rather Than Powder-Fed Processes. This Investigation Seeks to Fill This Knowledge Gap and Expand Beyond Single-Step Aging to Promote an overall Balanced AM-Fabricated Component. for This Study, Directed Energy Deposition (DED)-Fabricated Scalmalloy® Components Were Subjected to Low-Temperature Treatments to Minimize Residual Stresses Inherent in the Material Due to the Layer-By-Layer Build Process. …


Multifunctional Additive Manufacturing And Multiphysics Numerical Investigations Of Carbon Fiber Structural Battery Composite Using A Drop-On-Demand Method With In-Situ Consolidation, Xiangyang Dong, Yuekun Chen May 2023

Multifunctional Additive Manufacturing And Multiphysics Numerical Investigations Of Carbon Fiber Structural Battery Composite Using A Drop-On-Demand Method With In-Situ Consolidation, Xiangyang Dong, Yuekun Chen

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Lightweight Carbon Fiber Structural Battery Composite Has Great Potential in Increasing Structural Energy Storage Efficiency for Multifunctional Applications. However, It is Still Challenging to Design Carbon Fiber Multifunctional Composite Due to Lack of Proper Manufacturing Methods. in This Study, an Integrated Multifunctional Design and Fabrication Approach is Developed by Combining a Drop-On-Demand Additive Manufacturing Method with a Multiphysics Numerical Model to Guide the Development of the New Multifunctional Composite. through Deposition with In-Situ Consolidation, the Function and Thickness of Each Carbon Fiber Layer as Well as its Fiber Volume Fraction Are Accurately Controlled. Decreasing Layer Thickness Improves Flexural Properties. the …


Experimental And Numerical Studies Of Slurry-Based Coextrusion Deposition Of Continuous Carbon Fiber Micro-Batteries To Additively Manufacture 3d Structural Battery Composites, Aditya R. Thakur, Xiangyang Dong Apr 2023

Experimental And Numerical Studies Of Slurry-Based Coextrusion Deposition Of Continuous Carbon Fiber Micro-Batteries To Additively Manufacture 3d Structural Battery Composites, Aditya R. Thakur, Xiangyang Dong

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Carbon Fiber Structural Battery Composites Have Recently Attracted Growing Interests Due to their Potentials of Simultaneously Carrying Mechanical Loads and Storing Electrical Energy for Lightweight Application. in This Study, We Present a Slurry-Based Coextrusion Deposition Method to Additively Manufacture 3D Structural Battery Composites from Carbon Fiber Micro-Batteries. Cathode Slurry is Coextruded Together with Solid Polymer Electrolyte-Coated Carbon Fibers in a Single Deposition. a Network of Carbon Fiber Micro-Batteries is Achieved within the Fabricated Structural Battery Composites. Electrochemical Tests Show a Stable Charge-Discharge Performance Up to 100 Cycles. the Rheological Behavior of the Cathode Slurry is Found to Govern the Coextrusion …


Performance Evaluation Of Composite Sandwich Structures With Additively Manufactured Aluminum Honeycomb Cores With Increased Bonding Surface Area, M. Rangapuram, S. K. Dasari, Joseph William Newkirk, K. Chandrashekhara, H. Misak, P. R. Toivonen, D. Klenosky, T. Unruh, J. Sam Jan 2023

Performance Evaluation Of Composite Sandwich Structures With Additively Manufactured Aluminum Honeycomb Cores With Increased Bonding Surface Area, M. Rangapuram, S. K. Dasari, Joseph William Newkirk, K. Chandrashekhara, H. Misak, P. R. Toivonen, D. Klenosky, T. Unruh, J. Sam

Materials Science and Engineering Faculty Research & Creative Works

Modern aerostructures, including wings and fuselages, increasingly feature sandwich structures due to their high-energy absorption, low weight, and high flexural stiffness. The face sheet of these sandwich structures are typically thin composite laminates with interior honeycombs made of Nomex or aluminum. Standard cores are structurally efficient, but their design cannot be varied throughout the structure. With additive manufacturing (AM) technology, these core geometries can be altered to meet the design requirements that are not met in standard honeycomb cores. This study used a modified aluminum honeycomb core, with increased surface area on the top and bottom, as the core material …


Exploring Additive Manufacturing In A Space Environment - A Capstone Design Project Experience, Zain Zafar Khan, Zachary Alan Sobelman, Sharanabasaweshwara Asundi Jan 2023

Exploring Additive Manufacturing In A Space Environment - A Capstone Design Project Experience, Zain Zafar Khan, Zachary Alan Sobelman, Sharanabasaweshwara Asundi

Mechanical & Aerospace Engineering Faculty Publications

The employment of additive manufacturing in the non-standard environments like space, ships, or submarines has the potential to be an advanced utility not only in the pre-flight production of aerospace components and structures, but also for the onboard manufacturing of components and tools necessary for future space missions. For example, the ability to produce tools and structural components on the International Space Station can provide the space community the opportunity to make repairs and upgrades to the space station without wasting time and resources transporting such materials through additional missions. Additive manufacturing would allow for space missions to use on …


Experimental Approach For Development Of A Powder Spreading Metric In Additive Manufacturing, M. Hossein Sehhat, Austin T. Sutton, Zane Yates, Ming-Chuan Leu Jan 2023

Experimental Approach For Development Of A Powder Spreading Metric In Additive Manufacturing, M. Hossein Sehhat, Austin T. Sutton, Zane Yates, Ming-Chuan Leu

Mechanical and Aerospace Engineering Faculty Research & Creative Works

The Powder Spreading is a Vital Step of Powder-Based Additive Manufacturing (AM) Processes. the Quality of Spread Powder Can Considerably Influence the Properties of Fabricated Parts. Poorly Packed Powder Beds with High Surface Roughness Result in Printed Part Layers with Large Porosity and Low Dimensional Accuracy, Leading to Poor Mechanical Properties. Therefore, the Powder Spread ability and its Dependence on Process Parameters and Powder Characteristics Should Be Quantified to Improve the Efficiency of Powder-Based AM Methods. This Study Proposes a Novel Dimensionless Powder Spread Ability Metric that Can Be Commonly Used in Different Powder-Based AM Processes. the Quality of Spread …


Additively Manufactured Carbon Fiber- Reinforced Thermoplastic Composite Mold Plates For Injection Molding Process, C. Bivens, A. Wood, D. Ruble, M. Rangapuram, S. K. Dasari, K. Chandrashekhara, J. Degrange Jan 2023

Additively Manufactured Carbon Fiber- Reinforced Thermoplastic Composite Mold Plates For Injection Molding Process, C. Bivens, A. Wood, D. Ruble, M. Rangapuram, S. K. Dasari, K. Chandrashekhara, J. Degrange

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Polymer injection molding processes have been used to create high-volume parts quickly and efficiently. Injection molding uses mold plates that are traditionally made of very hard tool steels, such as P20 steel, which is extremely heavy and has very long lead times to build new molds. In this study, composite-based additive manufacturing (CBAM) was used to create mold plates using long-fiber carbon fiber and polyether ether ketone (PEEK). These mold plates were installed in an injection molding machine, and rectangular flat plates were produced using Lustran 348 acrylonitrile butadiene styrene (ABS). Tensile and flexural testing was performed on these parts …


Additive Manufacturing Of Complexly Shaped Sic With High Density Via Extrusion-Based Technique – Effects Of Slurry Thixotropic Behavior And 3d Printing Parameters, Ruoyu Chen, Adam Bratten, Joshua Rittenhouse, Tian Huang, Wenbao Jia, Ming-Chuan Leu, Haiming Wen Oct 2022

Additive Manufacturing Of Complexly Shaped Sic With High Density Via Extrusion-Based Technique – Effects Of Slurry Thixotropic Behavior And 3d Printing Parameters, Ruoyu Chen, Adam Bratten, Joshua Rittenhouse, Tian Huang, Wenbao Jia, Ming-Chuan Leu, Haiming Wen

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Additive manufacturing of dense SiC parts was achieved via an extrusion-based process followed by electrical-field assisted pressure-less sintering. The aim of this research was to study the effect of the rheological behavior of SiC slurry on the printing process and quality, as well as the influence of 3D printing parameters on the dimensions of the extruded filament, which are directly related to the printing precision and quality. Different solid contents and dispersant- Darvan 821A concentrations were studied to optimize the viscosity, thixotropy and sedimentation rate of the slurry. The optimal slurry was composed of 77.5 wt% SiC, Y2O3 and Al2O3 …


Predicting Defects In Laser Powder Bed Fusion Using In-Situ Thermal Imaging Data And Machine Learning, Sina Malakpour Estalaki, Cody S. Lough, Robert G. Landers, Edward C. Kinzel, Tengfei Luo Oct 2022

Predicting Defects In Laser Powder Bed Fusion Using In-Situ Thermal Imaging Data And Machine Learning, Sina Malakpour Estalaki, Cody S. Lough, Robert G. Landers, Edward C. Kinzel, Tengfei Luo

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Variation in the local thermal history during the Laser Powder Bed Fusion (LPBF) process in Additive Manufacturing (AM) can cause micropore defects, which add to the uncertainty of the mechanical properties (e.g., fatigue life, tensile strength) of the built materials. In-situ sensing has been proposed for monitoring the AM process to minimize defects, but successful minimization requires establishing a quantitative relationship between the sensing data and the porosity, which is particularly challenging with a large number of variables (e.g., laser speed, power, scan path, powder property). Physics-based modeling can simulate such an in-situ sensing-porosity relationship, but it is computationally costly. …


In-Situ Infrared Thermographic Inspection For Local Powder Layer Thickness Measurement In Laser Powder Bed Fusion, Tao Liu, Cody S. Lough, Hossein Sehhat, Yi Ming Ren, Panagiotis D. Christofides, Edward C. Kinzel, Ming-Chuan Leu Jul 2022

In-Situ Infrared Thermographic Inspection For Local Powder Layer Thickness Measurement In Laser Powder Bed Fusion, Tao Liu, Cody S. Lough, Hossein Sehhat, Yi Ming Ren, Panagiotis D. Christofides, Edward C. Kinzel, Ming-Chuan Leu

Mechanical and Aerospace Engineering Faculty Research & Creative Works

The laser powder bed fusion (LPBF) process is strongly influenced by the characteristics of the powder layer, including its thickness and thermal transport properties. This paper investigates in-situ characterization of the powder layer using thermographic inspection. A thermal camera monitors the temperature history of the powder surface immediately after a layer of new powder is deposited by the recoating system. During this process, thermal energy diffuses from the underlying solid part, eventually raising the temperature of the above powder layer. Guided by 1D modeling of this heat-up process, experiments show how the parameterized thermal history can be correlated with powder …


Tini-Based Bi-Metallic Shape-Memory Alloy By Laser-Directed Energy Deposition, Yitao Chen, Cesar Ortiz Rios, Braden Mclain, Joseph William Newkirk, Frank W. Liou Jun 2022

Tini-Based Bi-Metallic Shape-Memory Alloy By Laser-Directed Energy Deposition, Yitao Chen, Cesar Ortiz Rios, Braden Mclain, Joseph William Newkirk, Frank W. Liou

Materials Science and Engineering Faculty Research & Creative Works

In this study, laser-directed energy deposition was applied to build a Ti-rich ternary Ti–Ni–Cu shape-memory alloy onto a TiNi shape-memory alloy substrate to realize the joining of the multifunctional bi-metallic shape-memory alloy structure. The cost-effective Ti, Ni, and Cu elemental powder blend was used for raw materials. Various material characterization approaches were applied to reveal different material properties in two sections. The as-fabricated Ti–Ni–Cu alloy microstructure has the TiNi phase as the matrix with Ti2Ni secondary precipitates. The hardness shows no high values indicating that the major phase is not hard intermetallic. A bonding strength of 569.1 MPa was obtained …


Effects Of Particle Size Distribution With Efficient Packing On Powder Flowability And Selective Laser Melting Process, Zachary Young, Minglei Qu, Meelap Michael Coday, Qilin Guo, Seyed Mohammad H. Hojjatzadeh, Luis I. Escano, Kamel Fezzaa, Lianyi Chen Feb 2022

Effects Of Particle Size Distribution With Efficient Packing On Powder Flowability And Selective Laser Melting Process, Zachary Young, Minglei Qu, Meelap Michael Coday, Qilin Guo, Seyed Mohammad H. Hojjatzadeh, Luis I. Escano, Kamel Fezzaa, Lianyi Chen

Mechanical and Aerospace Engineering Faculty Research & Creative Works

The powder bed-based additive manufacturing (AM) process contains uncertainties in the powder spreading process and powder bed quality, leading to problems in repeatability and quality of the additively manufactured parts. This work focuses on identifying the uncertainty induced by particle size distribution (PSD) on powder flowability and the laser melting process, using Ti6Al4V as a model material. The flowability test results show that the effect of PSDs on flowability is not linear, rather the PSDs near dense packing ratios cause significant reductions in flowability (indicated by the increase in the avalanche angle and break energy of the powders measured by …


Data On The Validation To Determine The Material Thermal Properties Estimation Via A One-Dimensional Transient Convection Model, Lauren B. Tomanek, Daniel S. Stutts Feb 2022

Data On The Validation To Determine The Material Thermal Properties Estimation Via A One-Dimensional Transient Convection Model, Lauren B. Tomanek, Daniel S. Stutts

Mechanical and Aerospace Engineering Faculty Research & Creative Works

These data were acquired to estimate the parameters of a closed form solution of a one-dimensional transient convection heat diffusion PDE. The purpose was to demonstrate that the model could be used to determine the thermal conductivity. The system was tested for a wide range of thermal conductivity, 15-400 W/mK, in order to verify that the method was applicable for various materials. The data reported here refer to the study in the research articles, "Material Thermal Properties Estimation Via a One-Dimensional Transient Convection Model" [1] and "Influence of porosity on the thermal, electrical, and mechanical performance of selective laser melted …


Additive Manufacturing Of Continuous Carbon Fiber-Reinforced Sic Ceramic Composite With Multiple Fiber Bundles By An Extrusion-Based Technique, Ruoyu Chen, Adam Bratten, Joshua Rittenhouse, Ming-Chuan Leu, Haiming Wen Jan 2022

Additive Manufacturing Of Continuous Carbon Fiber-Reinforced Sic Ceramic Composite With Multiple Fiber Bundles By An Extrusion-Based Technique, Ruoyu Chen, Adam Bratten, Joshua Rittenhouse, Ming-Chuan Leu, Haiming Wen

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Due to the high cost, complex preparation process and difficulty in structural design, the traditional methods for carbon fiber reinforced SiC ceramic composite preparation have great limitations. This paper presents a technique for the additive manufacturing multiple continuous carbon fiber bundle-reinforced SiC ceramic composite with core-shell structure using an extrusion-based technique. A conventional nozzle system was modified to print simultaneously a water based SiC paste with continuous carbon fibers. Different levels of binder contents were investigated to optimize the stickiness, viscosity, thixotropy and viscoelasticity of the paste. After sintering, SiC whiskers were generated on the surface of fiber, which is …


Fast Prediction Of Thermal Distortion In Metal Powder Bed Fusion Additive Manufacturing: Part 2, A Quasi-Static Thermo-Mechanical Model, Hao Peng, Morteza Ghasri-Khouzani, Shan Gong, Ross Attardo, Pierre Ostiguy, Ronald B. Rogge, Bernice Aboud Gatrell, Joseph Budzinski, Charles Tomonto, Joel Neidig, M. Ravi Shankar, Richard Billo, David B. Go, David Hoelzle Aug 2018

Fast Prediction Of Thermal Distortion In Metal Powder Bed Fusion Additive Manufacturing: Part 2, A Quasi-Static Thermo-Mechanical Model, Hao Peng, Morteza Ghasri-Khouzani, Shan Gong, Ross Attardo, Pierre Ostiguy, Ronald B. Rogge, Bernice Aboud Gatrell, Joseph Budzinski, Charles Tomonto, Joel Neidig, M. Ravi Shankar, Richard Billo, David B. Go, David Hoelzle

Mechanical and Aerospace Engineering Faculty Research & Creative Works

The additive manufacturing (AM) process metal powder bed fusion (PBF) can quickly produce complex parts with mechanical properties comparable to that of wrought materials. However, thermal stress accumulated during Metal PBF may induce part distortion and even cause failure of the entire process. This manuscript is the second part of two companion manuscripts that collectively present a part-scale simulation method for fast prediction of thermal distortion in Metal PBF. The first part provides a fast prediction of the temperature history in the part via a thermal circuit network (TCN) model. This second part uses the temperature history from the TCN …


Fast Prediction Of Thermal Distortion In Metal Powder Bed Fusion Additive Manufacturing: Part 1, A Thermal Circuit Network Model, Hao Peng, Morteza Ghasri-Khouzani, Shan Gong, Ross Attardo, Pierre Ostiguy, Bernice Aboud Gatrell, Joseph Budzinski, Charles Tomonto, Joel Neidig, M. Ravi Shankar, Richard Billo, David B. Go, David Hoelzle Aug 2018

Fast Prediction Of Thermal Distortion In Metal Powder Bed Fusion Additive Manufacturing: Part 1, A Thermal Circuit Network Model, Hao Peng, Morteza Ghasri-Khouzani, Shan Gong, Ross Attardo, Pierre Ostiguy, Bernice Aboud Gatrell, Joseph Budzinski, Charles Tomonto, Joel Neidig, M. Ravi Shankar, Richard Billo, David B. Go, David Hoelzle

Mechanical and Aerospace Engineering Faculty Research & Creative Works

The additive manufacturing (AM) process metal powder bed fusion (PBF) can quickly produce complex parts with mechanical properties comparable to wrought materials. However, thermal stress accumulated during PBF induces part distortion, potentially yielding parts out of specification and frequently process failure. This manuscript is the first of two companion manuscripts that introduce a computationally efficient distortion and stress prediction algorithm that is designed to drastically reduce compute time when integrated in to a process design optimization routine. In this first manuscript, we introduce a thermal circuit network (TCN) model to estimate the part temperature history during PBF, a major computational …


Direct Metal Laser-Sintered Stainless Steel: Comparison Of Microstructure And Hardness Between Different Planes, M. Ghasri-Khouzani, H. Peng, R. Attardo, P. Ostiguy, J. Neidig, R. Billo, D. Hoelzle, M. R. Shankar Apr 2018

Direct Metal Laser-Sintered Stainless Steel: Comparison Of Microstructure And Hardness Between Different Planes, M. Ghasri-Khouzani, H. Peng, R. Attardo, P. Ostiguy, J. Neidig, R. Billo, D. Hoelzle, M. R. Shankar

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Microstructural analysis and micro-hardness measurements were performed on different planes of 316L stainless steel fabricated by direct metal laser sintering (DMLS) technique. A fine cellular network was observed within the steel microstructure, where morphology of most cells changed from columnar on XZ-plane (vertical section) to equiaxed on XY-plane (horizontal section). Correspondingly, morphology of most grains was found to alter from columnar for the XZ-plane to equiaxed in the case of the XY-plane. Moreover, X-ray diffraction (XRD) analysis revealed a fully austenitic structure for both the planes. The average micro-hardness value for the XZ-plane and XY-plane was insignificantly (≈ 3%) different, …


Experimental Measurement Of Residual Stress And Distortion In Additively Manufactured Stainless Steel Components With Various Dimensions, M. Ghasri-Khouzani, H. Peng, R. Rogge, R. Attardo, P. Ostiguy, J. Neidig, R. Billo, D. Hoelzle, M. R. Shankar Nov 2017

Experimental Measurement Of Residual Stress And Distortion In Additively Manufactured Stainless Steel Components With Various Dimensions, M. Ghasri-Khouzani, H. Peng, R. Rogge, R. Attardo, P. Ostiguy, J. Neidig, R. Billo, D. Hoelzle, M. R. Shankar

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Disk-shaped 316L stainless steel parts with various diameters and heights were additively manufactured using a direct metal laser sintering (DMLS) technique. Neutron diffraction was used to profile the residual stresses in the samples before and after removal of the build plate and support structures. Moreover, distortion level of the parts before and after the removal was quantified using a coordinate measuring machine (CMM). Large tensile in-plane stresses (up to ≈ 400 MPa) were measured near the as-built disk top surfaces, where the stress magnitude decreased from the disk center to the edges. The stress gradient was steeper for the disks …


Does Material Choice Drive Sustainability Of 3d Printing?, Jeremy Faludi, Zhongyin Hu, Shahd Alrashed, Christopher Braunholz, Suneesh Kaul, Leulekal Kassaye Feb 2015

Does Material Choice Drive Sustainability Of 3d Printing?, Jeremy Faludi, Zhongyin Hu, Shahd Alrashed, Christopher Braunholz, Suneesh Kaul, Leulekal Kassaye

Dartmouth Scholarship

Environmental impacts of six 3D printers using various materials were compared to determine if material choice drove sustainability, or if other factors such as machine type, machine size, or machine utilization dominate. Cradle-to-grave life-cycle assessments were performed, comparing a commercial-scale FDM machine printing in ABS plastic, a desktop FDM machine printing in ABS, a desktop FDM machine printing in PET and PLA plastics, a polyjet machine printing in its proprietary polymer, an SLA machine printing in its polymer, and an inkjet machine hacked to print in salt and dextrose. All scenarios were scored using ReCiPe Endpoint H methodology to combine …