Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

Electrical and Computer Engineering

Institution
Keyword
Publication Year
Publication

Articles 1 - 30 of 335

Full-Text Articles in Mechanical Engineering

Nurbs-Based Microstructure Design For Organic Photovoltaics, Ramin Noruzi, Sambit Ghadai, Onur Rauf Bingol, Adarsh Krishnamurthy, Baskar Ganapathysubramanian Jan 2020

Nurbs-Based Microstructure Design For Organic Photovoltaics, Ramin Noruzi, Sambit Ghadai, Onur Rauf Bingol, Adarsh Krishnamurthy, Baskar Ganapathysubramanian

Mechanical Engineering Publications

The microstructure – spatial distribution of electron donor and acceptor domains – plays an important role in determining the photo current in thin film organic solar cells (OSCs). Optimizing the microstructure can lead to higher photo current generation, and is an active area of experimental research. There has been recent progress in framing OSC microstructure design as a computational design problem. However, most current approaches to microstructure optimization are based on volumetric distribution of material, which makes the design space very large. In contrast, we frame the microstructure design optimization problem in terms of designing the interface between the donor and acceptor ...


Effect Of Annealing On The Contact Resistance Of Aluminum On A P-Type Substrate, Shrey Shah, George Patrick Watson Nov 2019

Effect Of Annealing On The Contact Resistance Of Aluminum On A P-Type Substrate, Shrey Shah, George Patrick Watson

Protocols and Reports

Aluminum contacts are widely used to form both ohmic and rectifying contacts. The process to form these contacts involves annealing, thus it is important to study the effect of annealing on the electrical properties of the contacts. Here, we present a way to measure the contact resistance of aluminum contacts formed on a p-type silicon substrate. It was found the contact resistivity decreased by an average of 18%. It was thus found that annealing at 400°C in a forming gas environment improves the electrical properties of aluminum contacts.


Influence Of Flow Rate, Nozzle Speed, Pitch And The Number Of Passes On The Thickness Of S1805 Photoresist In Suss Microtec As8 Spray Coater, Rohan Sanghvi, Gyuseok Kim Oct 2019

Influence Of Flow Rate, Nozzle Speed, Pitch And The Number Of Passes On The Thickness Of S1805 Photoresist In Suss Microtec As8 Spray Coater, Rohan Sanghvi, Gyuseok Kim

Tool Data

S1805 positive photoresist has been deposited on single crystalline Si wafers using a Suss MicroTec Alta Spray. The influence of flow rate, nozzle speed, pitch and number of passes on the thickness of the photoresist was studied. Results show that the thickness of S1805 is linearly proportional to the flow rate and number of passes, and inversely proportional to the nozzle speed and pitch.


Interpretable Deep Learning For Guided Microstructure-Property Explorations In Photovoltaics, Balaji Sesha Sarath Pokuri, Sambuddha Ghosal, Apurva Kokate, Soumik Sarkar, Baskar Ganapathysubramanian Oct 2019

Interpretable Deep Learning For Guided Microstructure-Property Explorations In Photovoltaics, Balaji Sesha Sarath Pokuri, Sambuddha Ghosal, Apurva Kokate, Soumik Sarkar, Baskar Ganapathysubramanian

Mechanical Engineering Publications

The microstructure determines the photovoltaic performance of a thin film organic semiconductor film. The relationship between microstructure and performance is usually highly non-linear and expensive to evaluate, thus making microstructure optimization challenging. Here, we show a data-driven approach for mapping the microstructure to photovoltaic performance using deep convolutional neural networks. We characterize this approach in terms of two critical metrics, its generalizability (has it learnt a reasonable map?), and its intepretability (can it produce meaningful microstructure characteristics that influence its prediction?). A surrogate model that exhibits these two features of generalizability and intepretability is particularly useful for subsequent design exploration ...


Stimulating Higher Order Thinking In Mechatronics By Comparing Pid And Fuzzy Control, Christopher J. Lowrance, John R. Rogers Sep 2019

Stimulating Higher Order Thinking In Mechatronics By Comparing Pid And Fuzzy Control, Christopher J. Lowrance, John R. Rogers

West Point Research Papers

Many studies have found active learning, either in the form of in-class exercises or projects, to be superior to traditional lectures. However, these forms of hands-on learning do not always get students to reach the higher order thinking skills associated with the highest levels of Bloom’s Taxonomy (i.e., analysis, synthesis, and evaluation). Assignments that expect students to take an expected approach to reach a well-defined solution contribute to a lack of higher order thinking at the college level. Professional engineers often face complex and ambiguous problems that require design decisions, where there is no straightforward answer. To strengthen ...


Influence Of Naoh Concentration On Transfer Process Of Graphene, Francisco Saldana, Chengyu Wen, George Patrick Watson Sep 2019

Influence Of Naoh Concentration On Transfer Process Of Graphene, Francisco Saldana, Chengyu Wen, George Patrick Watson

Protocols and Reports

The process of transferring a monolayer of graphene using two different concentrations of sodium hydroxide (NaOH) solution unto a silicon dioxide (SiO2) coated Si chip using electrochemistry was performed. The transfer process is crucial for the delamination of a continuous graphene monolayer film from copper foil. After examining and inspecting the integrity of the graphene monolayer, it was observed that the lower concentration to NaOH led to slower rate of hydrogen bubble generation; this condition was found to be less destructive and yielded a graphene film with fewer visible tears.


Plant Disease Identification Using Explainable 3d Deep Learning On Hyperspectral Images, Koushik Nagasubramanian, Sarah Jones, Asheesh K. Singh, Soumik Sarkar, Arti Singh, Baskar Ganapathysubramanian Aug 2019

Plant Disease Identification Using Explainable 3d Deep Learning On Hyperspectral Images, Koushik Nagasubramanian, Sarah Jones, Asheesh K. Singh, Soumik Sarkar, Arti Singh, Baskar Ganapathysubramanian

Mechanical Engineering Publications

Background

Hyperspectral imaging is emerging as a promising approach for plant disease identification. The large and possibly redundant information contained in hyperspectral data cubes makes deep learning based identification of plant diseases a natural fit. Here, we deploy a novel 3D deep convolutional neural network (DCNN) that directly assimilates the hyperspectral data. Furthermore, we interrogate the learnt model to produce physiologically meaningful explanations. We focus on an economically important disease, charcoal rot, which is a soil borne fungal disease that affects the yield of soybean crops worldwide.

Results

Based on hyperspectral imaging of inoculated and mock-inoculated stem images, our 3D ...


Development Of Optimized Phenomic Predictors For Efficient Plant Breeding Decisions Using Phenomic-Assisted Selection In Soybean, Kyle Parmley, Koushik Nagasubramanian, Soumik Sarkar, Baskar Ganapathysubramanian, Asheesh K. Singh Jul 2019

Development Of Optimized Phenomic Predictors For Efficient Plant Breeding Decisions Using Phenomic-Assisted Selection In Soybean, Kyle Parmley, Koushik Nagasubramanian, Soumik Sarkar, Baskar Ganapathysubramanian, Asheesh K. Singh

Mechanical Engineering Publications

The rate of advancement made in phenomic-assisted breeding methodologies has lagged those of genomic-assisted techniques, which is now a critical component of mainstream cultivar development pipelines. However, advancements made in phenotyping technologies have empowered plant scientists with affordable high-dimensional datasets to optimize the operational efficiencies of breeding programs. Phenomic and seed yield data was collected across six environments for a panel of 292 soybean accessions with varying genetic improvements. Random forest, a machine learning (ML) algorithm, was used to map complex relationships between phenomic traits and seed yield and prediction performance assessed using two cross-validation (CV) scenarios consistent with breeding ...


Encoding Invariances In Deep Generative Models, Viraj Shah, Ameya Joshi, Sambuddha Ghosal, Balaji Pokuri, Soumik Sarkar, Baskar Ganapathysubramanian, Chinmay Hegde Jun 2019

Encoding Invariances In Deep Generative Models, Viraj Shah, Ameya Joshi, Sambuddha Ghosal, Balaji Pokuri, Soumik Sarkar, Baskar Ganapathysubramanian, Chinmay Hegde

Mechanical Engineering Publications

Reliable training of generative adversarial networks (GANs) typically require massive datasets in order to model complicated distributions. However, in several applications, training samples obey invariances that are \textit{a priori} known; for example, in complex physics simulations, the training data obey universal laws encoded as well-defined mathematical equations. In this paper, we propose a new generative modeling approach, InvNet, that can efficiently model data spaces with known invariances. We devise an adversarial training algorithm to encode them into data distribution. We validate our framework in three experimental settings: generating images with fixed motifs; solving nonlinear partial differential equations (PDEs); and ...


Mechanical Properties And Applications Of Recycled Polycarbonate Particle Material Extrusion-Based Additive Manufacturing, Matthew J. Reich, Aubrey Woern, Nagendra Gautam Tanikella, Joshua M. Pearce May 2019

Mechanical Properties And Applications Of Recycled Polycarbonate Particle Material Extrusion-Based Additive Manufacturing, Matthew J. Reich, Aubrey Woern, Nagendra Gautam Tanikella, Joshua M. Pearce

Michigan Tech Publications

Past work has shown that particle material extrusion (fused particle fabrication (FPF)/fused granular fabrication (FGF)) has the potential for increasing the use of recycled polymers in 3D printing. This study extends this potential to high-performance (high-mechanical-strength and heat-resistant) polymers using polycarbonate (PC). Recycled PC regrind of approximately 25 mm2 was 3D printed with an open-source Gigabot X and analyzed. A temperature and nozzle velocity matrix was used to find useful printing parameters, and a print test was used to maximize the output for a two-temperature stage extruder for PC. ASTM type 4 tensile test geometries as well as ...


Thermal And Orbital Analysis Of Darkness Cubesat, Katie Dickey May 2019

Thermal And Orbital Analysis Of Darkness Cubesat, Katie Dickey

Honors Program Projects

Fermi National Accelerator Laboratory is sending a 3U CubeSat into LEO to search for a 3.5 keV photon corresponding to the decay of a theorized dark matter particle called the sterile neutrino. The CubeSat will encounter environmental variations while in orbit that can be computed through an orbital analysis using System’s Tool Kit. In order to minimize thermal noise readout, improve optical resolution, and increase bandwidth, the sensors must be kept below 170K while taking data. This temperature is difficult to achieve due to radiation from the Sun and the Earth’s albedo radiation. Through the thermal analysis ...


Stability Analysis Of A More General Class Of Systems With Delay-Dependent Coefficients, Chi Jin, Keqin Gu, Islam Boussaada, Silviu-Iulian Niculescu May 2019

Stability Analysis Of A More General Class Of Systems With Delay-Dependent Coefficients, Chi Jin, Keqin Gu, Islam Boussaada, Silviu-Iulian Niculescu

SIUE Faculty Research, Scholarship, and Creative Activity

This paper presents a systematic method to analyse the stability of systems with single delay in which the coefficient polynomials of the characteristic equation depend on the delay. Such systems often arise in, for example, life science and engineering systems. A method to analyze such systems was presented by Beretta and Kuang in a 2002 paper, but with some very restrictive assumptions. This work extends their results to the general case with the exception of some degenerate cases. It is found that a much richer behavior is possible when the restrictive assumptions are removed. The interval of interest for the ...


Civilian Acquirer For Fire Safety (Cafs), Antara Das, Marcus Allen, Clark Shaver Apr 2019

Civilian Acquirer For Fire Safety (Cafs), Antara Das, Marcus Allen, Clark Shaver

Posters

The department of Electronics Engineering Technology (EET) of Pittsburg State University has designed a prototype of an autonomous rover to help firefighters to find lives trapped in a building during an event of fire. The rover prototype has been named CAFS, which is the abbreviated form for Civilian Acquirer for Fire Safety. This device intends to produce the first ever autonomous system to locate, record, and transmit people’s location from within a building to a user outside of the building. According to the National Fire Protection Association (NFPA), on 2017, 72% of the fire that happened in the USA ...


Asme Student Design Competition, Marcus Todd Apr 2019

Asme Student Design Competition, Marcus Todd

Honors College Capstone Experience/Thesis Projects

For the completion of my capstone project with the Western Kentucky University Honors College, the following document details my experience with the American Society of Mechanical Engineer (ASME) Student Design Competition. This project was completed in a two semester sequence through working with a team of four. One semester focusing primarily on the design and the other on fabrication and evaluation. The 2019 ASME competition was the Pick and Place Race. In this event, 46 teams were challenged to design and construct a device having the ability to pick up balls of varying size. Both the design and assembly process ...


2019 Ieee Southeastcon Hardware Competition: A Systems Engineering Approach, Emily Sage Apr 2019

2019 Ieee Southeastcon Hardware Competition: A Systems Engineering Approach, Emily Sage

Honors College Capstone Experience/Thesis Projects

The Institute for Electrical and Electronics Engineers (IEEE) Huntsville section invites college students to participate in their annual SoutheastCon Conference. Western Kentucky University sends a team of engineering students to the hardware competition, an opportunity for students to design and build autonomous robots. The 2019 hardware competition called for students to develop a robot that could collect and sort debris by color. This thesis outlines the project lifecycle of the WKU 2019 SoutheastCon robot with an emphasis on implemented systems engineering tools and techniques. Systems Engineering is an interdisciplinary approach to project management that focuses on treating the overall project ...


Reactive Ion Etching Selectivity Of Si/Sio2: Comparing Of Two fluorocarbon Gases Chf3 And Cf4, Meiyue Zhang, Pat Watson Mar 2019

Reactive Ion Etching Selectivity Of Si/Sio2: Comparing Of Two fluorocarbon Gases Chf3 And Cf4, Meiyue Zhang, Pat Watson

Protocols and Reports

Two reactive ion etching (RIE) processes were studied to show the relative etch selectivity between SiO2 and Si using two fluorocarbon gases, CF4 and CHF3. Results show that CHF3 gives better selectivity (16:1) over CF4 (1.2 :1). On the other hand, the etch rate of SiO2 of CF4 is approximately 52.8 nm/min, faster than CHF3 (32.4 nm/min).


Ua66/9/2 Ogden College Of Science & Engineering Engineering Publications, Wku Archives Jan 2019

Ua66/9/2 Ogden College Of Science & Engineering Engineering Publications, Wku Archives

WKU Archives Collection Inventories

Publications created by and about the Engineering department.


Ua66/9/1 Ogden College Of Science & Engineering Engineering Administration, Wku Archives Jan 2019

Ua66/9/1 Ogden College Of Science & Engineering Engineering Administration, Wku Archives

WKU Archives Collection Inventories

No abstract provided.


Thin-Film Sensor For Fatigue Crack Sensing And Monitoring In Steel Bridges Under Varying Crack Propagation Rates And Random Traffic Loads, Xiangxiong Kong, Jian Li, Caroline Bennett, William Collins, Simon Laflamme, Hongki Jo Jan 2019

Thin-Film Sensor For Fatigue Crack Sensing And Monitoring In Steel Bridges Under Varying Crack Propagation Rates And Random Traffic Loads, Xiangxiong Kong, Jian Li, Caroline Bennett, William Collins, Simon Laflamme, Hongki Jo

Civil, Construction and Environmental Engineering Publications

Fatigue cracks are critical structural concerns for steel highway bridges, and fatigue initiation and propagation activity continues undetected between physical bridge inspections. Monitoring fatigue crack activity between physical inspections can provide far greater reliability in structural performance and can be used to prevent excessive damage and repair costs. In this paper, a thin-film strain sensor, called a soft elastomeric capacitor (SEC) sensor, is evaluated for sensing and monitoring fatigue cracks in steel bridges. The SEC is a flexible and mechanically robust strain sensor, capable of monitoring strain over large structural surfaces. By deploying multiple SECs in the form of dense ...


A Multi-Stage Optimization Model For Flexibility In Engineering Design, Ramin Giahi, Cameron A. Mackenzie, Chao Hu Jan 2019

A Multi-Stage Optimization Model For Flexibility In Engineering Design, Ramin Giahi, Cameron A. Mackenzie, Chao Hu

Industrial and Manufacturing Systems Engineering Conference Proceedings and Posters

Engineered systems often operate in uncertain environments. Understanding different environments under which a system will operate is important in engineering design. Thus, there is a need to design systems with the capability to respond to future changes. This research explores designing a hybrid renewable energy system while taking into account long-range uncertainties of 20 years. The objective is to minimize the expected cost of the hybrid renewable energy system over the next 20 years. A design solution may be flexible, which means that the design can be adapted or modified to meet different scenarios in the future. The value of ...


Fast Growth Of Thin Mapbi3 Crystal Wafers On Aqueous Solution Surface For Efficient Lateral-Structure Perovskite Solar Cells, Ye Liu, Qingfeng Dong, Yanjun Fang, Yuze Lin, Yehao Deng, Jinsong Huang Jan 2019

Fast Growth Of Thin Mapbi3 Crystal Wafers On Aqueous Solution Surface For Efficient Lateral-Structure Perovskite Solar Cells, Ye Liu, Qingfeng Dong, Yanjun Fang, Yuze Lin, Yehao Deng, Jinsong Huang

Mechanical & Materials Engineering Faculty Publications

Solar-grade single or multiple crystalline wafers are needed in large quantities in the solar cell industry, and are generally formed by a top-down process from crystal ingots, which causes a significant waste of materials and energy during slicing, polishing, and other processing. Here, a bottom-up technique that allows the growth of wafer-size hybrid perovskite multiple crystals directly from aqueous solution is reported. Single-crystalline hybrid perovskite wafers with centimeter size are grown at the top surface of a perovskite precursor solution. As well as saving raw materials, this method provides unprecedented advantages such as easily tunable thickness and rapid growth of ...


A Saddle-Point Dynamical System Approach For Robust Deep Learning, Yasaman Esfandiari, Keivan Ebrahimi, Aditya Balu, Nicola Elia, Umesh Vaidya, Soumik Sarkar Jan 2019

A Saddle-Point Dynamical System Approach For Robust Deep Learning, Yasaman Esfandiari, Keivan Ebrahimi, Aditya Balu, Nicola Elia, Umesh Vaidya, Soumik Sarkar

Electrical and Computer Engineering Publications

We propose a novel discrete-time dynamical system-based framework for achieving adversarial robustness in machine learning models. Our algorithm is originated from robust optimization, which aims to find the saddle point of a min-max optimization problem in the presence of uncertainties. The robust learning problem is formulated as a robust optimization problem, and we introduce a discrete-time algorithm based on a saddle-point dynamical system (SDS) to solve this problem. Under the assumptions that the cost function is convex and uncertainties enter concavely in the robust learning problem, we analytically show that using a diminishing step-size, the stochastic version of our algorithm ...


State Estimation For An Agonistic‐Antagonistic Muscle System, Thang Tien Nguyen, Holly Warner, Hung La, Hanieh Mohammadi, Daniel J. Simon, Hanz Richter Jan 2019

State Estimation For An Agonistic‐Antagonistic Muscle System, Thang Tien Nguyen, Holly Warner, Hung La, Hanieh Mohammadi, Daniel J. Simon, Hanz Richter

Electrical Engineering & Computer Science Faculty Publications

Research on assistive technology, rehabilitation, and prosthetics requires the understanding of human machine interaction, in which human muscular properties play a pivotal role. This paper studies a nonlinear agonistic‐antagonistic muscle system based on the Hill muscle model. To investigate the characteristics of the muscle model, the problem of estimating the state variables and activation signals of the dual muscle system is considered. In this work, parameter uncertainty and unknown inputs are taken into account for the estimation problem. Three observers are presented: a high gain observer, a sliding mode observer, and an adaptive sliding mode observer. Theoretical analysis shows ...


Cost Benefit Analysis Of Led Vs Florescent Lighting, Kurtis Clark, Phillip Humphrey Nov 2018

Cost Benefit Analysis Of Led Vs Florescent Lighting, Kurtis Clark, Phillip Humphrey

Student Research

Over the last few years, the state of Oklahoma has been looking at ways to reduce expenses to address concerns about a budget deficit. There have been efforts made to reduce expenses due to the use of energy. It has been said, when the lights are on, work is getting done. Running lights is therefore the cost of doing business. Our research examines the question, “is there a way to provide better lighting while operating at a lower cost.” This research examines the current lighting at Southwestern State University, primarily fluorescent lighting (FL), and a cost benefit analysis of switching ...


Cfd Modeling On Hydrodynamic Characteristics Of Multiphase Counter-Current Flow In A Structured Packed Bed For Post-Combustion Co2 Capture, Li Yang, Fang Liu, Kozo Saito, Kunlei Liu Nov 2018

Cfd Modeling On Hydrodynamic Characteristics Of Multiphase Counter-Current Flow In A Structured Packed Bed For Post-Combustion Co2 Capture, Li Yang, Fang Liu, Kozo Saito, Kunlei Liu

Mechanical Engineering Faculty Publications

Solvent-based post combustion CO2 capture is a promising technology for industrial application. Gas-liquid interfaces and interactions in the packed bed are considered one of the key factors affecting the overall CO2 absorption rate. Understanding the hydrodynamic characterizations within packed beds is essential to identify the appropriate enhanced mass transfer technique. However, multiphase counter-current flows in the structured packing typically used in these processes are complicated to visualize and optimize experimentally. In this paper, we aim to develop a comprehensive 3D multiphase, counter-current flow model to study the liquid/gas behavior on the surface of structured packing. The output ...


Multidimensional Optimal Droop Control For Dc Microgrids In Military Applications, Kaitlyn J. Bunker, Michael D. Cook, Wayne Weaver, Gordon Parker Oct 2018

Multidimensional Optimal Droop Control For Dc Microgrids In Military Applications, Kaitlyn J. Bunker, Michael D. Cook, Wayne Weaver, Gordon Parker

Michigan Tech Publications

Reliability is a key consideration when microgrid technology is implemented in military applications. Droop control provides a simple option without requiring communication between microgrid components, increasing the control system reliability. However, traditional droop control does not allow the microgrid to utilize much of the power available from a solar resource. This paper applies an optimal multidimensional droop control strategy for a solar resource connected in a microgrid at a military patrol base. Simulation and hardware-in-the-loop experiments of a sample microgrid show that much more power from the solar resource can be utilized, while maintaining the system’s bus voltage around ...


Electrochemical Hydrogenation Of Acetone To Produce Isopropanol Using A Polymer Electrolyte Membrane Reactor, Chen Li, Ashanti M. Sallee, Xiaoyu Zhang, Sandeep Kumar Oct 2018

Electrochemical Hydrogenation Of Acetone To Produce Isopropanol Using A Polymer Electrolyte Membrane Reactor, Chen Li, Ashanti M. Sallee, Xiaoyu Zhang, Sandeep Kumar

Civil & Environmental Engineering Faculty Publications

Electrochemical hydrogenation (ECH) of acetone is a relatively new method to produce isopropanol. It provides an alternative way of upgrading bio-fuels with less energy consumption and chemical waste as compared to conventional methods. In this paper, Polymer Electrolyte Membrane Fuel Cell (PEMFC) hardware was used as an electrochemical reactor to hydrogenate acetone to produce isopropanol and diisopropyl ether as a byproduct. High current efficiency (59.7%) and selectivity (>90%) were achieved, while ECH was carried out in mild conditions (65 degrees C and atmospheric pressure). Various operating parameters were evaluated to determine their effects on the yield of acetone and ...


Interface Model Of Pem Fuel Cell Membrane Steady-Dtate Behavior, Russell L. Edwards, Ayodeji Demuren Oct 2018

Interface Model Of Pem Fuel Cell Membrane Steady-Dtate Behavior, Russell L. Edwards, Ayodeji Demuren

Mechanical & Aerospace Engineering Faculty Publications

Modeling works which simulate the proton-exchange membrane fuel cell with the computational fluid dynamics approach involve the simultaneous solution of multiple, interconnected physics equations for fluid flows, heat transport, electrochemical reactions, and both protonic and electronic conduction. Modeling efforts vary by how they treat the physics within and adjacent to the membrane-electrode assembly (MEA). Certain approaches treat the MEA not as part of the computational domain, but rather an interface connecting the anode and cathode computational domains. These approaches may lack the ability to consistently model catalyst layer losses and MEA ohmic resistance. This work presents an upgraded interface formulation ...


Accurate Flexible Refinement Of Atomic Models Against Medium-Resolution Cryo-Em Maps Using Damped Dynamics, Julio A. Kovacs, Vitold E. Galkin, Willy Wriggers Sep 2018

Accurate Flexible Refinement Of Atomic Models Against Medium-Resolution Cryo-Em Maps Using Damped Dynamics, Julio A. Kovacs, Vitold E. Galkin, Willy Wriggers

Mechanical & Aerospace Engineering Faculty Publications

Background: Dramatic progress has recently been made in cryo-electron microscopy technologies, which now make possible the reconstruction of a growing number of biomolecular structures to near-atomic resolution. However, the need persists for fitting and refinement approaches that address those cases that require modeling assistance.

Methods: In this paper, we describe algorithms to optimize the performance of such medium-resolution refinement methods. These algorithms aim to automatically optimize the parameters that define the density shape of the flexibly fitted model, as well as the time-dependent damper cutoff distance. Atomic distance constraints can be prescribed for cases where extra containment of parts of ...


Shaped 3d Microcarriers For Adherent Cell Culture And Analysis, Chueh-Yu Wu, Daniel Stoecklein, Aditya Kommajosula, Jonathan Lin, Keegan Owsley, Baskar Ganapathysubramanian, Dino Di Carlo Aug 2018

Shaped 3d Microcarriers For Adherent Cell Culture And Analysis, Chueh-Yu Wu, Daniel Stoecklein, Aditya Kommajosula, Jonathan Lin, Keegan Owsley, Baskar Ganapathysubramanian, Dino Di Carlo

Mechanical Engineering Publications

Standard tissue culture of adherent cells is known to poorly replicate physiology and often entails suspending cells in solution for analysis and sorting, which modulates protein expression and eliminates intercellular connections. To allow adherent culture and processing in flow, we present 3D-shaped hydrogel cell microcarriers, which are designed with a recessed nook in a first dimension to provide a tunable shear-stress shelter for cell growth, and a dumbbell shape in an orthogonal direction to allow for self-alignment in a confined flow, important for processing in flow and imaging flow cytometry. We designed a method to rapidly design, using the genetic ...