Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 25 of 25

Full-Text Articles in Mechanical Engineering

Laser Assisted Embedding Of Nanoparticles Into Metallic Materials, Dong Lin, Sergey Suslov, Chang Ye, Yiliang Liao, C. Liu, Gary Cheng Apr 2015

Laser Assisted Embedding Of Nanoparticles Into Metallic Materials, Dong Lin, Sergey Suslov, Chang Ye, Yiliang Liao, C. Liu, Gary Cheng

Dr. Chang Ye

This paper reports a methodology of half-embedding nanoparticles into metallic materials. Transparent and opaque nanoparticles are chosen to demonstrate the process of laser assisted nanoparticle embedding. Dip coating method is used to coat transparent or opaque nanoparticle on the surface of metallic material. Nanoparticles are embedded into substrate by laser irradiation. In this study, the mechanism and process of nanoparticle embedding are investigated. It is found both transparent and opaque nanoparticles embedding are with high densities and good uniformities.


Mechanism Of Fatigue Performance Enhancement In A Superhard Nanoparticles Integrated Nanocomposites By A Hybrid Manufacturing Technique, Dong Lin, Chang Ye, Yiliang Liao, C. Liu, Gary Cheng Apr 2015

Mechanism Of Fatigue Performance Enhancement In A Superhard Nanoparticles Integrated Nanocomposites By A Hybrid Manufacturing Technique, Dong Lin, Chang Ye, Yiliang Liao, C. Liu, Gary Cheng

Dr. Chang Ye

A hybrid manufacturing process, which contains Laser Sintering (LS) and Laser shock peening (LSP), is introduced to generate iron-TiN nanoparticle nanocomposites. It is a two-step process including LS followed with LSP. Before LS, TiN nanoparticles mixed with iron powders are coated on samples surface. After LS, TiN nanoparticles are embedded into iron matrix to strengthen materials. Then LSP is performed to introduce work hardening and compressive residual stress. The existed nanoparticles increase the dislocation density and also help to pin the dislocation movement. Better residual stress stability under thermal annealing can be obtained by better dislocation movement stabilization, which is …


Numerical Simulation On Nanoparticles Integrated Laser Shock Peening Of Aluminum Alloy, Chang Ye, Gary Cheng Apr 2015

Numerical Simulation On Nanoparticles Integrated Laser Shock Peening Of Aluminum Alloy, Chang Ye, Gary Cheng

Dr. Chang Ye

In this paper, numerical simulation of nanoparticle integrated laser shock peening of aluminum alloys was carried out. A “tied constraint” was used to connect the matrix and nanoparticle assembly in ABAQUS package. Different particle size and particle volumes fraction (PVF) were studied. It was found that there is significant stress concentration around the nanoparticles. The existence of nanoparticle will influence the stress wave propagation and thus the final stress and strain state of the material after LSP. In addition, particle size, PVF and particle orientation all influence the strain rate, static residual stress, static plastic strain and energy absorption during …


Numerical Investigation Of Temperature Field During Sintering Of Bioceramic Nanoparticles By Pulse Lasers, Chang Ye, Gary Cheng Apr 2015

Numerical Investigation Of Temperature Field During Sintering Of Bioceramic Nanoparticles By Pulse Lasers, Chang Ye, Gary Cheng

Dr. Chang Ye

Traditional numerical study of the temperature field of laser thermal processing is based on two assumptions: 1. heat source is a surface heat flux, and 2. uniform material properties. This method is not accurate when it comes to the laser sintering of nanoparticle integrated bioceramics coating with certain porosity. In this paper, Heat transfer (HT) model and electromagnetic (EM) model is coupled to investigate the temperature field of bioceramics nanoparticles. The heat source calculated from EM field is simultaneously input into the HT model to calculate the temperature field of the nanoparticle assembly. The interaction between the nanoparticles in the …


Laser Engineered Multilayer Coating Of Biphasic Calcium Phosphate/Titanium Nanocomposite On Metal Substrates, Martin Zhang, Chang Ye, Uriel Erasuin, Toan Huynh, Chengzhi Cai, Gary Cheng Apr 2015

Laser Engineered Multilayer Coating Of Biphasic Calcium Phosphate/Titanium Nanocomposite On Metal Substrates, Martin Zhang, Chang Ye, Uriel Erasuin, Toan Huynh, Chengzhi Cai, Gary Cheng

Dr. Chang Ye

In this work, laser coating of biphasic calcium phosphate/titanium (BCP/Ti) nanocomposite on Ti-6Al-4 V substrates was developed. A continuous wave neodymium-doped yttrium aluminium garnet (Nd:YAG) laser was used to form a robust multilayer of BCP/Ti nanocomposite starting from hydroxyapatite and titanium nanoparticles. In this process, low power coating is realized because of the strong laser−nanoparticle interaction and good sinterability of nanosized titanium. To guide the optimization of laser processing conditions for the coating process, a multiphysics model coupling electromagnetic module with heat transfer module was developed. This model was validated by laser coating experiments. Important features of the coated samples, …


Nanoparticles Embedding Into Metallic Materials By Laser Direct Irradiation, Dong Lin, Chang Ye, Yiliang Liao, C. Liu, Gary Cheng Apr 2015

Nanoparticles Embedding Into Metallic Materials By Laser Direct Irradiation, Dong Lin, Chang Ye, Yiliang Liao, C. Liu, Gary Cheng

Dr. Chang Ye

We report a method to half-embed nanoparticles into metallic materials. Transparent and opaque nanoparticle (laser wavelength 1064 nm) were both successfully half-embedded (partial part of nanoparticles embedded into matrix while other parts still stay above the matrix) into metallic materials. Nanoparticles were coated on sample surface by dip coating before laser irradiation. After laser irradiation of different pulses and laser fluencies, nanoparticles were embedded into metal. The mechanism and process of embedding were investigated.


Understanding The Influence Of Copper Nanoparticles On Thermal Characteristics And Microstructural Development Of A Tin-Silver Solder, D. Lin, T. Srivatsan, Guo-Xiang Wang, R. Kovacevic Apr 2015

Understanding The Influence Of Copper Nanoparticles On Thermal Characteristics And Microstructural Development Of A Tin-Silver Solder, D. Lin, T. Srivatsan, Guo-Xiang Wang, R. Kovacevic

Dr. Guo-Xiang Wang

This paper presents and discusses issues relevant to solidification of a chosen lead-free solder, the eutectic Sn-3.5%Ag, and its composite counterparts. Direct temperature recordings for the no-clean solder paste during the simulated reflow process revealed a significant amount of undercooling to occur prior to the initiation of solidification of the eutectic Sn-3.5%Ag solder, which is 6.5 °C, and for the composite counterparts, it is dependent on the percentage of copper nanopowder. Temperature recordings revealed the same temperature level of 221 °C for both melting (from solid to liquid) and final solidification (after recalescence) of the Sn-3.5%Ag solder. Addition of copper …


Surface States In Template Synthesized Tin Oxide Nanoparticles, A. Cabot, J. Arbiol, R. Ferre, J. R. Morante, Fanglin Chen, Meilin Liu Mar 2015

Surface States In Template Synthesized Tin Oxide Nanoparticles, A. Cabot, J. Arbiol, R. Ferre, J. R. Morante, Fanglin Chen, Meilin Liu

Fanglin Chen

Tin–oxide nanoparticles with controlled narrow size distributions are synthesized while physically encapsulated inside silica mesoporous templates. By means of ultraviolet-visible spectroscopy, a redshift of the optical absorbance edge is observed. Photoluminescence measurements corroborate the existence of an optical transition at 3.2 eV. The associated band of states in the semiconductor gap is present even on template-synthesized nanopowders calcined at 800 °C, which contrasts with the evolution of the gap states measured on materials obtained by other methods. The gap states are thus considered to be surface localized, disappearing with surface faceting or being hidden by the surface-to-bulk ratio decrease.


Effect Of Molybdenum Disulfide Particle Sizes On Wear Performance Of Commercial Lubricant, Innovative Research Publications Irp India, S. M. Muzakkir, Harish Hirani Mar 2015

Effect Of Molybdenum Disulfide Particle Sizes On Wear Performance Of Commercial Lubricant, Innovative Research Publications Irp India, S. M. Muzakkir, Harish Hirani

Innovative Research Publications IRP India

Experimental investigations have been conducted for determination of effectiveness of employing a combination of three particle sizes (40 nm size, 1.75 μm size and 53 μm size) of Molybdenum Disulphide as anti-wear additive in a commercial lubricant. The conformal block and disk configuration has been used to conduct experiments for determination of wear of the sliding surfaces. The performance of the proposed combined particle sizes anti-wear additive is compared with single particle size anti-wear additives to establish its robustness under varying surface conditions.


Eulerian-Lagrangian Analysis Of Solid Particle Distribution In An Internally Heated And Cooled Air-Filled Cavity Jan 2015

Eulerian-Lagrangian Analysis Of Solid Particle Distribution In An Internally Heated And Cooled Air-Filled Cavity

Faculty of Engineering University of Malaya

A parametric study has been conducted to investigate particle deposition on solid surfaces during free convection flow in an internally heated and cooled square cavity filled with air. The cavity walls are insulated while several pairs of heaters and coolers (HACs) inside the cavity lead to free convection flow. The HACs are assumed to be isothermal heat source and sinks with temperatures T-h and T-c (T-h > T-c). The problem is numerically investigated using the Eulerian-Lagrangian method. Two-dimensional Navier-Stokes and energy equations are solved using finite volume discretization method. Applying the Lagrangian approach, 5000 particles, distributed randomly in the enclosure, were …


Probing The Enzymatic Activity Of Alkaline Phosphatase Within Quantum Dot Bioconjugates, Jonathan C. Claussen, Anthony Malanoski, Joyce C. Breger, Eunkeu Oh, Scott A. Walper, Kimihiro Susumu, Ramasis Goswami, Jeffrey R. Deschamps, Igor L. Medintz Jan 2015

Probing The Enzymatic Activity Of Alkaline Phosphatase Within Quantum Dot Bioconjugates, Jonathan C. Claussen, Anthony Malanoski, Joyce C. Breger, Eunkeu Oh, Scott A. Walper, Kimihiro Susumu, Ramasis Goswami, Jeffrey R. Deschamps, Igor L. Medintz

Jonathan C. Claussen

Enzymes provide the critical means by which to catalyze almost all biological reactions in a controlled manner. Methods to harness and exploit their properties are of strong current interest to the growing field of biotechnology. In contrast to depending upon recombinant genetic approaches, a growing body of evidence suggests that apparent enzymatic activity can be enhanced when located at a nanoparticle interface. We use semiconductor quantum dots (QDs) as a well-defined and easily bioconjugated nanoparticle along with Escherichia coli-derived alkaline phosphatase (AP) as a prototypical enzyme to seek evidence for this process in a de novo model system. We began …


Nanomaterial-Mediated Biosensors For Monitoring Glucose, Eric S. Mclamore, Masashige Taguchi, Andre Ptitsyn, Jonathan C. Claussen Jan 2014

Nanomaterial-Mediated Biosensors For Monitoring Glucose, Eric S. Mclamore, Masashige Taguchi, Andre Ptitsyn, Jonathan C. Claussen

Jonathan C. Claussen

Real-time monitoring of physiological glucose transport is crucial for gaining new understanding of diabetes. Many techniques and equipment currently exist for measuring glucose, but these techniques are limited by complexity of the measurement, requirement of bulky equipment, and low temporal/spatial resolution. The development of various types of biosensors (eg, electrochemical, optical sensors) for laboratory and/or clinical applications will provide new insights into the cause(s) and possible treatments of diabetes. State-of-the-art biosensors are improved by incorporating catalytic nanomaterials such as carbon nanotubes, graphene, electrospun nanofibers, and quantum dots. These nanomaterials greatly enhance biosensor performance, namely sensitivity, response time, and limit of …


Influence Of Ni Nanoparticle On The Morphology And Growth Of Interfacial Intermetallic Compounds Between Sn-3.8ag-0.7cu Lead-Free Solder And Copper Substrate Feb 2013

Influence Of Ni Nanoparticle On The Morphology And Growth Of Interfacial Intermetallic Compounds Between Sn-3.8ag-0.7cu Lead-Free Solder And Copper Substrate

A.S. Md Abdul Haseeb

This paper reports on the effects of adding Ni nanoparticles to a Sn-3.8Ag-0.7Cu solder. The nanocomposite was prepared by manual blending of SAC solder paste with various percentages of Ni particles. Results showed that the addition of Ni nanoparticles did not bring any significant change in the onset melting temperature of the solder. An increase in the weight percentage of nanoparticles in the solder caused an increase of the wetting angle and a decrease of spreading rate. Moreover, the addition of Ni nanoparticles changed the interfacial intermetallic compound morphology from a scalloped structure into a planar type structure, enhanced the …


Effects Of Reflow On The Interfacial Characteristics Between Zn Nanoparticles Containing Sn-3.8ag-0.7cu Solder And Copper Substrate Jan 2013

Effects Of Reflow On The Interfacial Characteristics Between Zn Nanoparticles Containing Sn-3.8ag-0.7cu Solder And Copper Substrate

A.S. Md Abdul Haseeb

Purpose - The purpose of this paper is to investigate the effects of zinc (Zn) nanoparticles on the interfacial intermetallic compounds (IMCs) between Sn-3.8Ag-0.7Cu (SAC) solder and Cu substrate during multiple reflow. Design/methodology/approach - The nanocomposite solders were prepared by manually mixing of SAC solder paste with varying amounts of Zn nanoparticles. The solder pastes were reflowed on a hotplate at 250 C for 45 s for up to six times. The actual Zn content after reflow was analyzed by inductively coupled plasma-optical emission spectroscopy (ICP-OES). The wetting behavior of the solders was characterized by analyzing the contact angles and …


Effects Of Reflow On The Interfacial Characteristics Between Zn Nanoparticles Containing Sn-3.8ag-0.7cu Solder And Copper Substrate Jan 2013

Effects Of Reflow On The Interfacial Characteristics Between Zn Nanoparticles Containing Sn-3.8ag-0.7cu Solder And Copper Substrate

A.S. Md Abdul Haseeb

Purpose - The purpose of this paper is to investigate the effects of zinc (Zn) nanoparticles on the interfacial intermetallic compounds (IMCs) between Sn-3.8Ag-0.7Cu (SAC) solder and Cu substrate during multiple reflow. Design/methodology/approach - The nanocomposite solders were prepared by manually mixing of SAC solder paste with varying amounts of Zn nanoparticles. The solder pastes were reflowed on a hotplate at 250 C for 45 s for up to six times. The actual Zn content after reflow was analyzed by inductively coupled plasma-optical emission spectroscopy (ICP-OES). The wetting behavior of the solders was characterized by analyzing the contact angles and …


Effects Of Reflow On The Interfacial Characteristics Between Zn Nanoparticles Containing Sn-3.8ag-0.7cu Solder And Copper Substrate Jan 2013

Effects Of Reflow On The Interfacial Characteristics Between Zn Nanoparticles Containing Sn-3.8ag-0.7cu Solder And Copper Substrate

A.S. Md Abdul Haseeb

Purpose - The purpose of this paper is to investigate the effects of zinc (Zn) nanoparticles on the interfacial intermetallic compounds (IMCs) between Sn-3.8Ag-0.7Cu (SAC) solder and Cu substrate during multiple reflow. Design/methodology/approach - The nanocomposite solders were prepared by manually mixing of SAC solder paste with varying amounts of Zn nanoparticles. The solder pastes were reflowed on a hotplate at 250 C for 45 s for up to six times. The actual Zn content after reflow was analyzed by inductively coupled plasma-optical emission spectroscopy (ICP-OES). The wetting behavior of the solders was characterized by analyzing the contact angles and …


Preparation And Low-Temperature Sintering Of Cu Nanoparticles For High-Power Devices Apr 2012

Preparation And Low-Temperature Sintering Of Cu Nanoparticles For High-Power Devices

A.S. Md Abdul Haseeb

One of the fundamental requirements for high-temperature electronic packaging is reliable silicon attach with low and stable electrical resistance. This paper presents a study conducted on Cu nanoparticles as an alternative lead-free interconnect material for high-temperature applications. Cu nanoparticles were prepared using pulsed wire evaporation technique in water medium. Pure Cu nanoparticles without any organic mixture were used in this paper. An economical approach to extract the nanoparticles from water was established. In situ Cu nanoparticles oxide reduction was successfully done using forming gas $({\rm N}-{2}{\hbox{-}}5\%{\rm H}-{2})$. Cross-section analysis on bonded interface shows onset of Cu nanoparticles sintering at 400$^{\circ}{\rm …


Stability Of Molybdenum Nanoparticles In Sn-3.8ag-0.7cu Solder During Multiple Reflow And Their Influence On Interfacial Intermetallic Compounds Feb 2012

Stability Of Molybdenum Nanoparticles In Sn-3.8ag-0.7cu Solder During Multiple Reflow And Their Influence On Interfacial Intermetallic Compounds

A.S. Md Abdul Haseeb

This work investigates the effects of molybdenum nanoparticles on the growth of interfacial intermetallic compound between Sn-3.8Ag-0.7Cu solder and copper substrate during multiple reflow. Molybdenum nanoparticles were mixed with Sn-3.8Ag-0.7Cu solder paste by manual mixing. Solder samples were reflowed on a copper substrate in a 250 °C reflow oven up to six times. The molybdenum content of the bulk solder was determined by inductive coupled plasma-optical emission spectrometry. It is found that upon the addition of molybdenum nanoparticles to Sn-3.8Ag-0.7Cu solder, the interfacial intermetallic compound thickness and scallop diameter decreases under all reflow conditions. Molybdenum nanoparticles do not appear to …


Effects Of Addition Of Copper Particles Of Different Size To Sn-3.5ag Solder Dec 2011

Effects Of Addition Of Copper Particles Of Different Size To Sn-3.5ag Solder

A.S. Md Abdul Haseeb

No abstract provided.


A Benchmark Study On The Thermal Conductivity Of Nanofluids, Jacopo Buongiorno, David C. Venerus, Naveen Prabhat, Thomas Mckrell, Jessica Townsend, Rebecca J. Christianson, Yuriv V. Tolmachev, Pawel Keblinski, Lin-Wen Hu, Jorge L. Alvarado, In Cheol Bang, Sandra W. Bishnoi, Marco Bonetti, Frank Botz, Anselmo Cecere, Yun Chang, Gang Chen, Haisheng Chen, Sung Jae Chung, Minking K. Chyu, Sarit K. Das, Roberto Di Paola, Yulong Ding, Frank Dubois, Grzegorz Dzido, Jacob Eapen, Werner Escher, Denis Funfschilling, Quentin Galand, Jinwei Gao, Patricia E. Gharagozloo, Kenneth E. Goodson, Jorge Gustavo Gutierrez, Haiping Hong, Mark Horton, Kyo Sik Hwang, Carlo S. Iorio, Seok Pil Jang, Andrzej B. Jarzebski, Yiran Jiang, Stephan Kabelac, Liwen Jin, Aravind Kamath, Mark A. Kedzierski, Lim Geok Kieng, Chongyoup Kim, Ji-Hyun Kim, Seokwon Kim, Seung Hyun Lee, Kai Choong Leong, Indranil Manna, Bruno Michel, Rui Ni, Hrishikesh E. Patel, John Philip, Dimos Poulikakos, Cecil Reynaud, Raffaele Savino, Pawan K. Singh, Pengxiang Song, Thirumalachari Sundararajan, Elena Timofeeva, Todd Tritcak, Aleksandr N. Turanov, Stefan Van Vaerenbergh, Dongsheng Wen, Sanjeeva Witharana, Chun Yang, Wei-Hsun Yeh, Xiao-Zheng Zhao, Sheng-Qi Zhou Dec 2011

A Benchmark Study On The Thermal Conductivity Of Nanofluids, Jacopo Buongiorno, David C. Venerus, Naveen Prabhat, Thomas Mckrell, Jessica Townsend, Rebecca J. Christianson, Yuriv V. Tolmachev, Pawel Keblinski, Lin-Wen Hu, Jorge L. Alvarado, In Cheol Bang, Sandra W. Bishnoi, Marco Bonetti, Frank Botz, Anselmo Cecere, Yun Chang, Gang Chen, Haisheng Chen, Sung Jae Chung, Minking K. Chyu, Sarit K. Das, Roberto Di Paola, Yulong Ding, Frank Dubois, Grzegorz Dzido, Jacob Eapen, Werner Escher, Denis Funfschilling, Quentin Galand, Jinwei Gao, Patricia E. Gharagozloo, Kenneth E. Goodson, Jorge Gustavo Gutierrez, Haiping Hong, Mark Horton, Kyo Sik Hwang, Carlo S. Iorio, Seok Pil Jang, Andrzej B. Jarzebski, Yiran Jiang, Stephan Kabelac, Liwen Jin, Aravind Kamath, Mark A. Kedzierski, Lim Geok Kieng, Chongyoup Kim, Ji-Hyun Kim, Seokwon Kim, Seung Hyun Lee, Kai Choong Leong, Indranil Manna, Bruno Michel, Rui Ni, Hrishikesh E. Patel, John Philip, Dimos Poulikakos, Cecil Reynaud, Raffaele Savino, Pawan K. Singh, Pengxiang Song, Thirumalachari Sundararajan, Elena Timofeeva, Todd Tritcak, Aleksandr N. Turanov, Stefan Van Vaerenbergh, Dongsheng Wen, Sanjeeva Witharana, Chun Yang, Wei-Hsun Yeh, Xiao-Zheng Zhao, Sheng-Qi Zhou

Jessica Townsend

This article reports on the International Nanofluid Property Benchmark Exercise, or INPBE, in which the thermal conductivity of identical samples of colloidally stable dispersions of nanoparticles or “nanofluids,” was measured by over 30 organizations worldwide, using a variety of experimental approaches, including the transient hot wire method, steady-state methods, and optical methods. The nanofluids tested in the exercise were comprised of aqueous and nonaqueous basefluids, metal and metal oxide particles, near-spherical and elongated particles, at low and high particle concentrations. The data analysis reveals that the data from most organizations lie within a relatively narrow band (±10% or less) about …


A Benchmark Study On The Thermal Conductivity Of Nanofluids, Jacopo Buongiorno, David Venerus, Naveen Prabhat, Thomas Mckrell, Jessica Townsend, Rebecca Christianson, Yuriv Tolmachev, Pawel Keblinski, Lin-Wen Hu, Jorge Alvarado, In Cheol Bang, Sandra Bishnoi, Marco Bonetti, Frank Botz, Anselmo Cecere, Yun Chang, Gang Chen, Haisheng Chen, Sung Jae Chung, Minking Chyu, Sarit Das, Roberto Di Paola, Yulong Ding, Frank Dubois, Grzegorz Dzido, Jacob Eapen, Werner Escher, Denis Funfschilling, Quentin Galand, Jinwei Gao, Patricia Gharagozloo, Kenneth Goodson, Jorge Gutierrez, Haiping Hong, Mark Horton, Kyo Sik Hwang, Carlo Iorio, Seok Pil Jang, Andrzej Jarzebski, Yiran Jiang, Stephan Kabelac, Liwen Jin, Aravind Kamath, Mark Kedzierski, Lim Geok Kieng, Chongyoup Kim, Ji-Hyun Kim, Seokwon Kim, Seung Hyun Lee, Kai Choong Leong, Indranil Manna, Bruno Michel, Rui Ni, Hrishikesh Patel, John Philip, Dimos Poulikakos, Cecil Reynaud, Raffaele Savino, Pawan Singh, Pengxiang Song, Thirumalachari Sundararajan, Elena Timofeeva, Todd Tritcak, Aleksandr Turanov, Stefan Van Vaerenbergh, Dongsheng Wen, Sanjeeva Witharana, Chun Yang, Wei-Hsun Yeh, Xiao-Zheng Zhao, Sheng-Qi Zhou Dec 2011

A Benchmark Study On The Thermal Conductivity Of Nanofluids, Jacopo Buongiorno, David Venerus, Naveen Prabhat, Thomas Mckrell, Jessica Townsend, Rebecca Christianson, Yuriv Tolmachev, Pawel Keblinski, Lin-Wen Hu, Jorge Alvarado, In Cheol Bang, Sandra Bishnoi, Marco Bonetti, Frank Botz, Anselmo Cecere, Yun Chang, Gang Chen, Haisheng Chen, Sung Jae Chung, Minking Chyu, Sarit Das, Roberto Di Paola, Yulong Ding, Frank Dubois, Grzegorz Dzido, Jacob Eapen, Werner Escher, Denis Funfschilling, Quentin Galand, Jinwei Gao, Patricia Gharagozloo, Kenneth Goodson, Jorge Gutierrez, Haiping Hong, Mark Horton, Kyo Sik Hwang, Carlo Iorio, Seok Pil Jang, Andrzej Jarzebski, Yiran Jiang, Stephan Kabelac, Liwen Jin, Aravind Kamath, Mark Kedzierski, Lim Geok Kieng, Chongyoup Kim, Ji-Hyun Kim, Seokwon Kim, Seung Hyun Lee, Kai Choong Leong, Indranil Manna, Bruno Michel, Rui Ni, Hrishikesh Patel, John Philip, Dimos Poulikakos, Cecil Reynaud, Raffaele Savino, Pawan Singh, Pengxiang Song, Thirumalachari Sundararajan, Elena Timofeeva, Todd Tritcak, Aleksandr Turanov, Stefan Van Vaerenbergh, Dongsheng Wen, Sanjeeva Witharana, Chun Yang, Wei-Hsun Yeh, Xiao-Zheng Zhao, Sheng-Qi Zhou

Rebecca J. Christianson

This article reports on the International Nanofluid Property Benchmark Exercise, or INPBE, in which the thermal conductivity of identical samples of colloidally stable dispersions of nanoparticles or “nanofluids,” was measured by over 30 organizations worldwide, using a variety of experimental approaches, including the transient hot wire method, steady-state methods, and optical methods. The nanofluids tested in the exercise were comprised of aqueous and nonaqueous basefluids, metal and metal oxide particles, near-spherical and elongated particles, at low and high particle concentrations. The data analysis reveals that the data from most organizations lie within a relatively narrow band (±10% or less) about …


Effects Of Co Nanoparticle Addition To Sn-3.8ag-0.7cu Solder On Interfacial Structure After Reflow And Ageing May 2011

Effects Of Co Nanoparticle Addition To Sn-3.8ag-0.7cu Solder On Interfacial Structure After Reflow And Ageing

A.S. Md Abdul Haseeb

Effects of Co nanoparticle additions to Sn-3.8Ag-0.7Cu on the structure of solder/copper interface have been studied after reflow and high temperature ageing (150 °C, up to 1008 h). Results show that the Co nanoparticles substantially suppress the growth of Cu3Sn but enhance Cu 6Sn5 growth. Cobalt nanoparticles reduce interdiffusion coefficient in Cu3Sn. It is suggested that the Co nanoparticles undergo surface dissolution during reflow and exert their influence, at least partially, through alloying effect. © 2011 Elsevier Ltd. All rights reserved.


Addition Of Cobalt Nanoparticles Into Sn-3.8ag-0.7cu Lead-Free Solder By Paste Mixing Jan 2011

Addition Of Cobalt Nanoparticles Into Sn-3.8ag-0.7cu Lead-Free Solder By Paste Mixing

A.S. Md Abdul Haseeb

Purpose - The purpose of this paper is to investigate the effects of addition Co nanoparticles on the characteristic properties of Sn-3.8Ag-0.7Cu solder. Design/methodology/approach - Cobalt (Co) nanoparticles were added to Sn-Ag-Cu solders by thoroughly blending various weight percentages (0-2.0 wt%) of Co nanoparticles with near eutectic SAC387 solder paste. Blending was done mechanically for 30 min to ensure a homogeneous mixture. The paste mixture was then reflowed on a hot plate at 250°C for 45 s. The melting points of nanocomposite solder were determined by differential scanning calorimetry. Spreading rate of nanocomposite was calculated following the JIS Z3198-3 standard. …


Interfacial Reaction And Dissolution Behavior Of Cu Substrate In Molten Sn-3.8ag-0.7cu In The Presence Of Mo Nanoparticles Jan 2011

Interfacial Reaction And Dissolution Behavior Of Cu Substrate In Molten Sn-3.8ag-0.7cu In The Presence Of Mo Nanoparticles

A.S. Md Abdul Haseeb

Purpose - In electronic packaging, when solid copper comes in contact with liquid solder alloy, the former dissolves and intermetallic compounds (IMCs) form at the solid-liquid interface. The purpose of this paper is to study the effect of the presence of molybdenum nanoparticles on the dissolution of copper and the formation of interfacial IMC. Design/methodology/approach - Cu wire having a diameter of 250 μm is immersed in liquid composite solders at 250° up to 15 min. Composite solder was prepared by adding various amount of Mo nanoparticles into the Sn-3.8Ag-0.7Cu (SAC) solder paste. The dissolution behavior of Cu substrate is …


Understanding The Effects Of Addition Of Copper Nanoparticles To Sn-3.5 Ag Solder Jan 2011

Understanding The Effects Of Addition Of Copper Nanoparticles To Sn-3.5 Ag Solder

A.S. Md Abdul Haseeb

Purpose - The purpose of this paper is to focus on the fabrication of SAC nanocomposites solder and discuss the effects of nanoCu addition on the structure and properties of resulted nanocomposite solder. Design/methodology/ approach - Ball milling is a nonequilibrium processing technique for producing composite metal particles with submicron homogeneity by the repeated cold welding and fracture of powder particles. This method is believed to offer good processablity, precise control over the solder composition, and produce more homogeneous mixture. Findings - It is found that the melting temperature, the wetting behaviour, and hardness are improved when the Cu nanoparticles …