Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 12 of 12

Full-Text Articles in Mechanical Engineering

Formation Of Organized Nanostructures From Unstable Bilayers Of Thin Metallic Liquids, Mikhail Khenner, Sagar Yadavali, Ramki Kalyanaraman Dec 2011

Formation Of Organized Nanostructures From Unstable Bilayers Of Thin Metallic Liquids, Mikhail Khenner, Sagar Yadavali, Ramki Kalyanaraman

Mikhail Khenner

Dewetting of pulsed-laser irradiated, thin (< 20 nm), optically reflective metallic bilayers on an optically transparent substrate with a reflective support layer is studied within the lubrication equations model. A steady-state bilayer film thickness (h) dependent temperature profile is derived based on the mean substrate temperature estimated from the elaborate thermal model of transient heating and melting/freezing. Large thermocapillary forces are observed along the plane of the liquid-liquid and liquid-gas interfaces due to this h-dependent temperature, which, in turn, is strongly influenced by the h-dependent laser light reflection and absorption. Consequently the dewetting is a result of the competition between thermocapillary and intermolecular forces. A linear analysis of the dewetting length scales established that the non-isothermal calculations better predict the experimental results as compared to the isothermal case within the bounding Hamaker coefficients. Subsequently, a computational non-linear dynamics study of the dewetting pathway was performed for Ag/Co and Co/Ag bilayer systems to predict the morphology evolution. We found that the systems evolve towards formation of different morphologies, including core-shell, embedded, or stacked nanostructure morphologies.


Dynamic Properties Of Railway Track And Its Components : A State-Of-The-Art Review, Sakdirat Kaewunruen, Alexander Remennikov Nov 2011

Dynamic Properties Of Railway Track And Its Components : A State-Of-The-Art Review, Sakdirat Kaewunruen, Alexander Remennikov

Alex Remennikov

Recent findings indicate one of major causes of damages, which is attributed to the resonant behaviours, in a railway track and its components. Basically, when a railway track is excited to generalised dynamic loading, the railway track deforms and then vibrates for certain duration. Dynamic responses of the railway track and its components are the key to evaluate the structural capacity of railway track and its components. If a dynamic loading resonates the railway track’s dynamic responses, its components tend to have the significant damage from excessive dynamic stresses. For example, a rail vibration could lead to defects in rails …


Ductile Regime Single Point Diamond Turning Of Quartz Resulting In An Improved And Damage-Free Surface, John Patten Nov 2011

Ductile Regime Single Point Diamond Turning Of Quartz Resulting In An Improved And Damage-Free Surface, John Patten

john a patten

No abstract provided.


Response Characterization Of Electroactive Polymers As Mechanical Sensors, G. Alici, Geoffrey M. Spinks, J. D. Madden, Y. Wu, G G. Wallace Oct 2011

Response Characterization Of Electroactive Polymers As Mechanical Sensors, G. Alici, Geoffrey M. Spinks, J. D. Madden, Y. Wu, G G. Wallace

Gordon Wallace

The characterization of the dynamic response (including transfer function identification) of trilayer polypyrrole (PPy) type conducting polymer sensors is presented. The sensor was built like a cantilever beam with the free end stimulated through a mechanical lever system, which provided displacement inputs. The voltage generated and current passing between the two outer PPy layers as a result of the input was measured to model the output/input behavior of the sensors based on their experimental current/displacement and voltage/displacement frequency responses. We specifically targeted the low-frequency behavior of the sensor as it is a relatively slowsystem. Experimental transfer function models were generated …


Optimization Of The Acoustic Performance Of Polyimide Foams, Olivier Doutres, Noureddine Atalla, Rebecca Wulliman, Shari Ferguson, Steve Bailey Jul 2011

Optimization Of The Acoustic Performance Of Polyimide Foams, Olivier Doutres, Noureddine Atalla, Rebecca Wulliman, Shari Ferguson, Steve Bailey

Olivier Doutres Ph.D.

Due to their low weight, high fire resistance and good mechanical strength, SOLIMIDE® Polyimide foams are good candidates for sound packages in aerospace sound transmission applications. However, their high resistance to airflow limits the sound absorption efficiency inside a double wall structure and thus the sound transmission loss of the structure. The paper discusses two concepts to improve the transmission efficiency of such materials for double wall applications: (i) improving its sound absorption behavior by removing mechanically or chemically the cell membranes and thus decreasing both the flow resistance and tortuosity, (ii) coupling the Polyimide foams to screens (porous or …


A Practical Impedance Tube Method To Estimate The Normal Incidence Sound Transmission Loss Of Double Wall Structure, Olivier Doutres, Noureddine Atalla Jul 2011

A Practical Impedance Tube Method To Estimate The Normal Incidence Sound Transmission Loss Of Double Wall Structure, Olivier Doutres, Noureddine Atalla

Olivier Doutres Ph.D.

The objective of this paper is to propose a practical impedance tube method to optimize the sound transmission loss of double wall structure by concentrating on the sound package placed inside the structure. In a previous work, the authors derived an expression that breaks down the transmission loss of a double wall structure containing a sound absorbing blanket separated from the panels by air layers in terms of three main contributions; (i) sound transmission loss of the panels, (ii) sound transmission loss of the blanket and (iii) sound absorption due to multiple reflections inside the cavity. The sound transmission loss …


Transferts De Chaleur Dans Un Réacteur Thermochimique Solaire Muni D’Un Récepteur Volumique Poreux, Hernando Romero Paredes Rubio May 2011

Transferts De Chaleur Dans Un Réacteur Thermochimique Solaire Muni D’Un Récepteur Volumique Poreux, Hernando Romero Paredes Rubio

Hernando Romero Paredes Rubio

Un réacteur thermochimique solaire de 1 kW muni d’une structure céramique poreuse en céramique est modélisé pour simuler les transferts thermiques a l’intérieur du récepteur volumétrique. Le modèle développé a été utilisé pour prévoir le comportement thermique du réacteur en fonction des différentes conditions opératoires qui concernent le débit de gaz inerte, le flux solaire incident, la porosité, la longueur du récepteur, et la prise en compte de réactions chimiques. Les résultats montrent que la température maximale est de 1850K pour une concentration solaire de 1000 soleils. La température diminue de manière significative lorsque le débit de gaz augmente. Un …


A Large Deformation, Rotation-Free, Isogeometric Shell, D. J. Benson, Y. Bazilevs, Ming-Chen Hsu, T. J. R. Hughes Mar 2011

A Large Deformation, Rotation-Free, Isogeometric Shell, D. J. Benson, Y. Bazilevs, Ming-Chen Hsu, T. J. R. Hughes

Ming-Chen Hsu

Conventional finite shell element formulations use rotational degrees of freedom to describe the motion of the fiber in the Reissner–Mindlin shear deformable shell theory, resulting in an element with five or six degrees of freedom per node. These additional degrees of freedom are frequently the source of convergence difficulties in implicit structural analyses, and, unless the rotational inertias are scaled, control the time step size in explicit analyses. Structural formulations that are based on only the translational degrees of freedom are therefore attractive. Although rotation-free formulations using C0 basis functions are possible, they are complicated in comparison to their C1 …


Stability Of A Strongly Anisotropic Thin Epitaxial Film In A Wetting Interaction With Elastic Substrate, Mikhail Khenner, Wondimu T. Tekalign, Margo S. Levine Jan 2011

Stability Of A Strongly Anisotropic Thin Epitaxial Film In A Wetting Interaction With Elastic Substrate, Mikhail Khenner, Wondimu T. Tekalign, Margo S. Levine

Mikhail Khenner

The linear dispersion relation for longwave surface perturbations, as derived by Levine et al. Phys. Rev. B 75, 205312 (2007) is extended to include a smooth surface energy anisotropy function with a variable anisotropy strength (from weak to strong, such that sharp corners and slightly curved facets occur on the corresponding Wulff shape). Through detailed parametric studies it is shown that a combination of a wetting interaction and strong anisotropy, and even a wetting interaction alone results in complicated linear stability characteristics of strained and unstrained films.


Modeling Diverse Physics Of Nanoparticle Self-Assembly In Pulsed Laser-Irradiated Metallic Films, Mikhail Khenner Jan 2011

Modeling Diverse Physics Of Nanoparticle Self-Assembly In Pulsed Laser-Irradiated Metallic Films, Mikhail Khenner

Mikhail Khenner

Presents physics behind dewetting of thin liquid films and mathematical/computational modeling tools (Educational/Research presentation for senior physics majors).


Issues Of Wind Power For Renewable Society Construction At 3-11 Earthquake & Tsunami Striken Areas 被災地からの自然エネルギー社会づくりと風力発電の課題, Masayuki Horio Dec 2010

Issues Of Wind Power For Renewable Society Construction At 3-11 Earthquake & Tsunami Striken Areas 被災地からの自然エネルギー社会づくりと風力発電の課題, Masayuki Horio

Masayuki Horio

No abstract provided.


Reverse Logic - Safety Of Spent Nuclear Fuel Disposal, Antti Lempinen, Marianne Silvan-Lempinen Dec 2010

Reverse Logic - Safety Of Spent Nuclear Fuel Disposal, Antti Lempinen, Marianne Silvan-Lempinen

Antti Lempinen

No abstract provided.