Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Mechanical Engineering

Thermal Conductivity Reduction Through Isotope Substitution In Nanomaterials: Predictions From An Analytical Classical Model And Nonequilibrium Molecular Dynamics Simulations, Ganesh Balasubramanian, Ishwar K. Puri, Michael C. Bohm, Frederic Leroy Jul 2011

Thermal Conductivity Reduction Through Isotope Substitution In Nanomaterials: Predictions From An Analytical Classical Model And Nonequilibrium Molecular Dynamics Simulations, Ganesh Balasubramanian, Ishwar K. Puri, Michael C. Bohm, Frederic Leroy

Ganesh Balasubramanian

We introduce an analytical model to rapidly determine the thermal conductivity reduction due to mass disorder in nanomaterials. Although this simplified classical model depends only on the masses of the different atoms, it adequately describes the changes in thermal transport as the concentrations of these atoms vary. Its predictions compare satisfactorily with nonequilibrium molecular dynamics simulations of the thermal conductivity of 14C–12C carbon nanotubes as well as with previous simulations of other materials. We present it as a simple tool to quantitatively estimate the thermal conductivity decrease that is induced by isotope substitution in various materials.


Heat Conduction Across A Solid-Solid Interface: Understanding Nanoscale Interfacial Effects On Thermal Resistance, Ganesh Balasubramanian, Ishwar K. Puri Jul 2011

Heat Conduction Across A Solid-Solid Interface: Understanding Nanoscale Interfacial Effects On Thermal Resistance, Ganesh Balasubramanian, Ishwar K. Puri

Ganesh Balasubramanian

Phonons scatter and travel ballistically in systems smaller than the phonon mean free path. At larger lengths, the transport is instead predominantly diffusive. We employ molecular dynamics simulations to describe the length dependence of the thermal conductivity. The simulations show that the interfacial thermal resistance Rk for a Si-Ge superlattice is inversely proportional to its length, but reaches a constant value as the system dimension becomes larger than the phonon mean free path. This nanoscale effect is incorporated into an accurate continuum model by treating the interface as a distinct material with an effective thermal resistance equal to Rk .


The Development And Implementation Of A Nanotechnology Module Into A Large, Freshman Engineering Course, Vinod Lohani, Ganesh Balasubramanian, Ishwar Puri, Scott Case, Roop Mahajan Jan 2009

The Development And Implementation Of A Nanotechnology Module Into A Large, Freshman Engineering Course, Vinod Lohani, Ganesh Balasubramanian, Ishwar Puri, Scott Case, Roop Mahajan

Ganesh Balasubramanian

The development and implementation of a nanotechnology learning module into a freshman engineering course in Virginia Tech’s large engineering program is discussed. This module, a part of a spiral theory based nanotechnology option that will be implemented in the curriculum of the Engineering Science Mechanics (ESM) department at Virginia Tech, was piloted with ~180 freshmen in Spring ’08. The pilot included a prior knowledge survey, a 40-minute in-class presentation on nanotechnology, a hands-on module involving analysis of nanoscale images, plotting of force functions at atomic scale using LABVIEW, and a post-module survey. Students’ misconceptions, observed through the prior knowledge survey, …


Unsteady Nanoscale Thermal Transport Across A Solid-Fluid Interface, Ganesh Balasubramanian, Soumik Banerjee, Ishwar K. Puri Sep 2008

Unsteady Nanoscale Thermal Transport Across A Solid-Fluid Interface, Ganesh Balasubramanian, Soumik Banerjee, Ishwar K. Puri

Ganesh Balasubramanian

We simulate unsteady nanoscale thermal transport at a solid-fluidinterface by placing cooler liquid-vapor Ar mixtures adjacent to warmer Fe walls. The equilibration of the system towards a uniform overall temperature is investigated using nonequilibrium molecular dynamics simulations from which the heat flux is also determined explicitly. The Ar–Fe intermolecular interactions induce the migration of fluid atoms into quasicrystallineinterfacial layers adjacent to the walls, creating vacancies at the migration sites. This induces temperature discontinuities between the solidlikeinterfaces and their neighboring fluid molecules. The interfacial temperature difference and thus the heat flux decrease as the system equilibrates over time. The averaged interfacial …