Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 12 of 12

Full-Text Articles in Mechanical Engineering

Lubrication Performance Of Vegetable Oils Modified With Halloysite Clay Nanotubes (Hnt) As Lubricant Additives, Md Abu Sayeed Biswas Dec 2021

Lubrication Performance Of Vegetable Oils Modified With Halloysite Clay Nanotubes (Hnt) As Lubricant Additives, Md Abu Sayeed Biswas

Theses and Dissertations

Vegetable oil-based nano-lubricants are a great alternative to petroleum-based lubricants because of their less adverse impact on the environment. This work evaluates the tribological performance of sunflower, corn, and peanut oils modified with halloysite clay nanotubes (Al2Si2O2(OH)2nH2O) as lubricant additives at different concentrations. To analyze the tribological performance of the nano-lubricants, a block-on-ring tribometer was used following the ASTM G-077-17 standard procedure. Characterization of HNT was carried out by X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), and Thermogravimetric Analysis (TGA). The effect of the HNT on the lubrication performance of the newly developed vegetable oil-based nano-lubricants was evaluated, and the …


Development Of Vegetable Oil-Based Nano-Lubricants Using Montmorillonite Clay (Mmt) Nanoparticles As Lubricant Additives, Md Mashfiqur Rahman Dec 2021

Development Of Vegetable Oil-Based Nano-Lubricants Using Montmorillonite Clay (Mmt) Nanoparticles As Lubricant Additives, Md Mashfiqur Rahman

Theses and Dissertations

Because of the environmental impact and price volatility, there has been a growing concern on the use of petroleum-based lubricants. This issue has stimulated research into the development of biodegradable lubricants like vegetable oils. In this study, the tribological and rheological behavior of sunflower, peanut, and corn oils modified with Montmorillonite nanoclay (MMT) as lubricant additives were evaluated at various concentrations. A custom-made block on ring tribotester was used to evaluate the wear and friction characteristics of the nano-lubricants, following the ASTM G-077-05 standard. The effects of concentration and shear rate on shear viscosity were studied using a parallel plate …


Computational Modeling Of Transient Processes During Run-In For Tribological Systems, Rob Morien Dec 2016

Computational Modeling Of Transient Processes During Run-In For Tribological Systems, Rob Morien

Theses and Dissertations

Understanding the frictional behavior of machine elements in mutual rolling or sliding contact is important for many engineering applications. When frictional sliding is initiated, the tribological system passes through several stages with each stage possessing its own unique frictional property. The initial transition process preceding stationary sliding is usually called “run-in”. During the run-in time interval, surface topographies of frictional contacts as well as lubricant distribution and surface tribofilms reorganize and adjust through asperity deformation and wear processes before reaching the steady state. This surface stability formed during run-in leads to an improvement in frictional performance during steady state operation, …


Numerical Modeling Of Heat Transfer And Material Flow During Friction Extrusion Process, Hongsheng Zhang Jun 2016

Numerical Modeling Of Heat Transfer And Material Flow During Friction Extrusion Process, Hongsheng Zhang

Theses and Dissertations

Friction extrusion process is a novel manufacturing process that converts low-cost metal precursors (e.g. powders and machining chips) into high-value wires with potential applications in 3D printing of metallic products. However, there is little existing scientific literature involving friction extrusion process until recently. The present work is to study the heat transfer and material flow phenomena during the friction extrusion process on aluminum alloy 6061 through numerical models validated by experimental measurements.

The first part is a study of a simplified process in which flow of a transparent Newtonian fluid in a cylindrical chamber caused by frictional contact with a …


On The Nonlinear Tribological Jerk Dynamics At Sliding Interfaces, Divyeshkumar Patel Dec 2014

On The Nonlinear Tribological Jerk Dynamics At Sliding Interfaces, Divyeshkumar Patel

Theses and Dissertations

As the world desires the next industrial revolution, the potential threats that will undermine energy efficient innovations include detrimental frictional effects that exacerbate wear, hasten equipment breakdowns, and worsen heat dissipation. Capturing the inherently nonlinear manifestations of friction fundamentally has been difficult. A fundamental modeling scheme elucidating friction will bolster novel technologies synthesizing wear resistant materials and lubricants needed for sustainable energy efficiency.

Frictional dissipation at dynamical sliding interfaces has been studied for generations. Interfacial sliding frictional effects are prevalent in natural and artificial phenomena such as earthquake, hip and knee joints, and the moving parts of energy-producing and energy-consuming …


Modeling Of Instabilities And Self-Organization At The Frictional Interface, Vahid Mortazavi May 2014

Modeling Of Instabilities And Self-Organization At The Frictional Interface, Vahid Mortazavi

Theses and Dissertations

The field of friction-induced self-organization and its practical importance remains unknown territory to many tribologists. Friction is usually thought of as irreversible dissipation of energy and deterioration; however, under certain conditions, friction can lead to the formation of new structures at the interface, including in-situ tribofilms and various patterns at the interface.

This thesis studies self-organization and instabilities at the frictional interface, including the instability due to the temperature-dependency of the coefficient of friction, the transient process of frictional running-in, frictional Turing systems, the stick-and-slip phenomenon, and, finally, contact angle (CA) hysteresis as an example of solid-liquid friction and dissipation. …


An Experimental Investigation Characterizing The Tribological Performance Of Natural And Synthetic Biolubricants Composed Of Carboxylic Acids For Energy Conservation And Sustainability, Carlton Jonathan Reeves Dec 2013

An Experimental Investigation Characterizing The Tribological Performance Of Natural And Synthetic Biolubricants Composed Of Carboxylic Acids For Energy Conservation And Sustainability, Carlton Jonathan Reeves

Theses and Dissertations

Over the last several decades the lubrication industry has been striving to bring bio-based lubricants known as biolubricants to prominence. The reasons for the increased environmental initiatives are due to depletion of oil reserves, increases in oil price, stringent government regulations on petroleum-based oils, and most importantly, concerns for protecting the environment. With an estimated, 50% of all lubricants entering the environment and much of these being composed of toxic mineral oils, biolubricants have begun to witness a resurgence. This experimental investigation seeks to develop a new class of ecofriendly biolubricants that are less toxic to the environment, derived from …


Developing Response Surfaces Based On Tool Geometry For A Convex Scrolled Shoulder Step Spiral (Cs4) Friction Stir Processing Tool Used To Weld Al 7075, Bryce K. Nielsen Mar 2009

Developing Response Surfaces Based On Tool Geometry For A Convex Scrolled Shoulder Step Spiral (Cs4) Friction Stir Processing Tool Used To Weld Al 7075, Bryce K. Nielsen

Theses and Dissertations

The purpose of this study is to develop a series of response surfaces that define critical outcomes for welding in Al 7075 based on the tool geometry of a convex scrolled shoulder step spiral (CS4) friction stir processing tool. These response surfaces will be used to find critical minimums in forces which will decrease the required power input for the process. A comprehensive parameterization of the tool geometry is defined in this paper. A pilot study was performed to determine the feasibility of varying certain geometric features. Then a screening experiment eliminated those geometric features that were not as significant …


An Optimization-Based Framework For Designing Robust Cam-Based Constant-Force Compliant Mechanisms, John Christian Meaders Jun 2008

An Optimization-Based Framework For Designing Robust Cam-Based Constant-Force Compliant Mechanisms, John Christian Meaders

Theses and Dissertations

Constant-force mechanisms are mechanical devices that provide a near-constant output force over a prescribed deflection range. This thesis develops various optimization-based methods for designing robust constant-force mechanisms. The configuration of the mechanisms that are the focus of this research comprises a cam and a compliant spring fixed at one end while making contact with the cam at the other end. This configuration has proven to be an innovative solution in several applications because of its simplicity in manufacturing and operation. In this work, several methods are introduced to design these mechanisms, and reduce the sensitivity of these mechanisms to manufacturing …


Characterizing The Frictional Interface In Friction Stir Welding, Daryl A. Stratton Mar 2007

Characterizing The Frictional Interface In Friction Stir Welding, Daryl A. Stratton

Theses and Dissertations

Quantitative understanding of frictional phenomena between the tool and the workpiece is essential for accurate modeling of the Friction Stir Welding (FSW) process. Two methods of measuring the tool-workpiece interface are proposed that allow frictional measurements to be made under extreme conditions. The first method uses a cylindrically curved surface in contact with a flat plate. The ranges of temperature, velocity, and normal force used in this method are 100–600°C, 0.38–2.0 m/s (75–400) surface feet per minute (SFM)), and 450–2700 N (100–600 lbf), respectively. Data are gathered at different parameter level combinations to provide enough data to create an empirical …


Analysis Of Heat Generation And Temperature In High Speed, High Temperature Bearing Balls, Hans R. Ringger Apr 1973

Analysis Of Heat Generation And Temperature In High Speed, High Temperature Bearing Balls, Hans R. Ringger

Theses and Dissertations

This thesis reports an investigation of the generation of heat on, and the prediction of temperature of high-speed, dry-film lubricated, stainless steel bearing balls.


A Study Of Frictional Drag Force Reduction On A Flat Plate By The Injection Of A Dilute Solution Of Guar Gum Into The Boundary Layer, Neil Henry Clay Aug 1967

A Study Of Frictional Drag Force Reduction On A Flat Plate By The Injection Of A Dilute Solution Of Guar Gum Into The Boundary Layer, Neil Henry Clay

Theses and Dissertations

The study of frictional drag force reduction has been the subject of much research for many years. One of the significant developments in the field of frictional drag force reduction has been the discovery of the effectiveness of dilute polymer solutions in reducing drag. By using dilute high-polymer solutions frictional drag forces in pipe flow have been reduced by as much as 70 per cent.