Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 23 of 23

Full-Text Articles in Mechanical Engineering

Study Of Vortices Formation In Lateral Intakes Of Pumping Stations, Muhammad Elgindi Jan 2024

Study Of Vortices Formation In Lateral Intakes Of Pumping Stations, Muhammad Elgindi

Theses and Dissertations

The inefficient design of pumping stations leads to undesirable flow characteristics and the formation of vortices in the sump. These undesirable flow features adversely affect the pumping unit performance and increase the operation and maintenance cost. The aim of this thesis is to assess the ability of the Realizable turbulence model to predict the formation of free-surface and submerged vortices within lateral pumping stations’ intakes. Additionally, the study aims to investigate the effect of the flow ratio and bottom clearance on the flow characteristics and the vortices formation in the sump. Finally, the study introduces an assessment of curtain walls …


Investigation Of Performance And Cavitation Treatment In A Kaplan Hydro Turbine, Muhannad R. Al-Haddad May 2019

Investigation Of Performance And Cavitation Treatment In A Kaplan Hydro Turbine, Muhannad R. Al-Haddad

Theses and Dissertations

Cavitation is a phenomenon that occurs in various turbomachinery applications causing drawbacks on the. Some of these downsides are damaging the components of the system, generating noise and vibration, and loss of the turbine efficiency over time. Thus, it is imperative to address issue of cavitation to increase the life span of the equipment in addition to improve the system performance. This thesis introduces a method used to mitigate the cavitation phenomenon in a 3-inch Kaplan hydro turbine via injecting air at the leading edge of the rotor blades. The study is based on modeling the turbine using Computational Fluid …


Thermal Gradient Characterization And Control In Micro-Fabricated Gas Chromatography Systems, Austin Richard Foster May 2019

Thermal Gradient Characterization And Control In Micro-Fabricated Gas Chromatography Systems, Austin Richard Foster

Theses and Dissertations

In order to make gas chromatography (GC) more widely accessible, considerable effort has been made in developing miniaturized GC systems. Thermal gradient gas chromatograpy (TGGC), one of the heating methods used in GC, has recieved attention over the years due to it's ability to enhance analyte focusing. The present work seeks to develop high performance miniaturized GC systems by combining miniaturized GC technology with thermal gradient control methods, creating miniaturized thermal gradient gas chromatography (µTGGC) systems. To aid in this development a thermal control system was developed and shown to successfully control various µTGGC systems. DAQ functionality was also included …


Investigation Of Performance And Cavitation Treatment In A Kaplan Hydro Turbine, Muhannad R. Al-Haddad May 2019

Investigation Of Performance And Cavitation Treatment In A Kaplan Hydro Turbine, Muhannad R. Al-Haddad

Theses and Dissertations

Cavitation is a phenomenon that occurs in various turbomachinery applications causing drawbacks on the. Some of these downsides are damaging the components of the system, generating noise and vibration, and loss of the turbine efficiency over time. Thus, it is imperative to address issue of cavitation to increase the life span of the equipment in addition to improve the system performance. This thesis introduces a method used to mitigate the cavitation phenomenon in a 3-inch Kaplan hydro turbine via injecting air at the leading edge of the rotor blades. The study is based on modeling the turbine using Computational Fluid …


Wall Shear Stress In Simplified And Scanned Avian Respiratory Airways, Michael Sterling Farnsworth Dec 2018

Wall Shear Stress In Simplified And Scanned Avian Respiratory Airways, Michael Sterling Farnsworth

Theses and Dissertations

Birds uniquely produce sound through a vocal organ known as a syrinx. The presence of wall shear stress acting on the airway cells of any organism will affect how airway cells develop and multiply. Unique features of avian airway geometry and breathing pattern might have contributed to the development of the syrinx. This thesis examines wall shear stress in the trachea and first bronchi of avian geometries using computational fluid dynamics. The computational fluid dynamic simulations underwent grid- and time-independence studies and were validated using particle image velocimetry. Parameters such as bird size, bronchial branching angle, and breathing waveform were …


A Study Of Development Of A Micro Hydro Turbine System With A Rim Drive And Air Injection Treatment For Cavitation., Tomoki Sakamoto Aug 2017

A Study Of Development Of A Micro Hydro Turbine System With A Rim Drive And Air Injection Treatment For Cavitation., Tomoki Sakamoto

Theses and Dissertations

This thesis presents the study of Kaplan hydro turbines system at a very low head and air injection treatment to reduce cavitation happening around a turbine. Regarding the study of Kaplan hydroturbine system, optimization of hydro turbine system with a rim generator to gain a better performance was conducted by CFD and experiment. E-Motors, the partner of this research, is developing an integrated design to simplify manufacturing and installation. The integrated design includes a rim in the outside of the turbine runner to house the electrical generator rotor, namely rim drive. This approach enables a compact and simple assembly without …


Implementations Of Fourier Methods In Cfd To Analyze Distortion Transfer And Generation Through A Transonic Fan, Marshall Warren Peterson Jun 2016

Implementations Of Fourier Methods In Cfd To Analyze Distortion Transfer And Generation Through A Transonic Fan, Marshall Warren Peterson

Theses and Dissertations

Inlet flow distortion is a non-uniform total pressure, total temperature, or swirl (flow angularity) condition at an aircraft engine inlet. Inlet distortion is a critical consideration in modern fan and compressor design. This is especially true as the industry continues to increase the efficiency and operating range of air breathing gas turbine engines. The focus of this paper is to evaluate the Computational Fluid Dynamics (CFD) Harmonic Balance (HB) solver in STAR-CCM+ as a reduced order method for capturing inlet distortion as well as the associated distortion transfer and generation. New methods for quantitatively describing and analyzing distortion transfer and …


Numerical And Experimental Study Of Liquid Breakup Process In Solid Rocket Motor Nozzle, Yi-Hsin Yen May 2016

Numerical And Experimental Study Of Liquid Breakup Process In Solid Rocket Motor Nozzle, Yi-Hsin Yen

Theses and Dissertations

Rocket propulsion is an important travel method for space exploration and national defense, rockets needs to be able to withstand wide range of operation environment and also stable and precise enough to carry sophisticated payload into orbit, those engineering requirement makes rocket becomes one of the state of the art industry. The rocket family have been classified into two major group of liquid and solid rocket based on the fuel phase of liquid or solid state. The solid rocket has the advantages of simple working mechanism, less maintenance and preparing procedure and higher storage safety, those characters of solid rocket …


Concurrent Engineering Through Parallelization Of The Design-Analysis Process, Eric Joseph Wardell May 2015

Concurrent Engineering Through Parallelization Of The Design-Analysis Process, Eric Joseph Wardell

Theses and Dissertations

The disconnect between the way CAD and analysis applications handle model geometry has long been a hindrance to engineering design. Current industry practices often utilize outdated forms of geometry transfer between these different engineering software applications such as neutral file formats and direct translations. Not only to these current practices slow the engineering design process but they also hinder the integration of design and analysis programs.This thesis proposes a new, multi-user, integrated design-analysis architecture which allows auxiliary functions such as analysis and computer-aided manufacturing to be better connected with the computer-aided design. It is hypothesized that this new architecture will …


An Investigation Of Off-Design Operation In High Suction Performance Inducers, Ryan Collins Cluff May 2015

An Investigation Of Off-Design Operation In High Suction Performance Inducers, Ryan Collins Cluff

Theses and Dissertations

Three-dimensional two-phase unsteady CFD simulations were run on three and four-blade inducers for the purpose of analyzing differences in cavitation stability at design and off-design flow rates. At design flow rates, there were very small differences between the breakdown curves for the three and four-bladed inducers. However, at lower cavitation numbers, the three-bladed inducer exhibited up to three times the rotor forces than the four-bladed inducer. When moving to off-design flow rates, both inducers experienced multiple modes of cavitation instabilities including rotating cavitation, alternate-blade cavitation, and cavitation surge. The four-bladed inducer began experiencing the formation of these modes of instability …


A Study Of The Development Of An Analytical Wall Function For Large Eddy Simulation Of Turbulent Channel And Rectangular Duct Flow, Takahiko Hasegawa Aug 2014

A Study Of The Development Of An Analytical Wall Function For Large Eddy Simulation Of Turbulent Channel And Rectangular Duct Flow, Takahiko Hasegawa

Theses and Dissertations

This paper reports computational work of three-dimensional channel turbulent flow and rectangular duct flow with the Analytical Wall Function (AWF). The main purpose of this study is to establish and validate the new modeling of AWF for Large Eddy Simulation (LES-AWF). In order to compare the performance of the new modeling of LES-AWF, the conventional LES-AWF and Wall-resolved LES are applied. The new LES-AWF showed improvements of flow prediction in both of three-dimensional channel flow and rectangular duct flow, although the improvement in rectangular duct is relatively minor.


High Fidelity Time Accurate Cfd Analysis Of A Multi-Stage Turbofan At Various Operating Points In Distorted Inflow, David Bruce Weston Jun 2014

High Fidelity Time Accurate Cfd Analysis Of A Multi-Stage Turbofan At Various Operating Points In Distorted Inflow, David Bruce Weston

Theses and Dissertations

Inlet distortion is an important consideration in fan performance. Distortion can be caused through flight conditions and airframe-engine interfaces. The focus of this paper is a series of high-fidelity time accurate Computational Fluid Dynamics (CFD) simulations of a multistage fan. These investigate distortion transfer and generation as well as the underlying flow physics of these phenomena under different operating conditions. The simulations are performed on the full annulus of a 3 stage fan. The code used to carry out these simulations is a modified version of OVERFLOW 2.2 developed as part of the Computational Research and Engineering Acquisition Tools and …


Validation Of A Modified Version Of Overflow 2.2 For Use With Turbomachinery Under Clean And Total Pressure Distorted Conditions And A Study Of Blade Loading In Distortion, Matthew L. Marshall Jun 2014

Validation Of A Modified Version Of Overflow 2.2 For Use With Turbomachinery Under Clean And Total Pressure Distorted Conditions And A Study Of Blade Loading In Distortion, Matthew L. Marshall

Theses and Dissertations

Inlet distortion is an important consideration in fan performance. Distortion can be generated through flight conditions and airframe-engine interfaces. The focus of this paper is a series of high-fidelity, time-accurate Computational Fluid Dynamics (CFD) simulations of a multistage fan, investigating distortion transfer, distortion generation, and the underlying flow physics under different operating conditions. The simulations are full annulus and include 3 stages and the inlet guide vane (IGV). The code used to carry out these simulations is a modified version of Overflow2.2 that was developed as part of the Computational Research and Engineering Acquisition Tools and Environment (CREATE) program. The …


Cfd Assessment Of Respiratory Drug Delivery Efficiency In Adults And Improvements Using Controlled Condensational Growth, Ross L. Walenga Jan 2014

Cfd Assessment Of Respiratory Drug Delivery Efficiency In Adults And Improvements Using Controlled Condensational Growth, Ross L. Walenga

Theses and Dissertations

Pharmaceutical aerosols provide a number of advantages for treating respiratory diseases that include targeting high doses directly to the lungs and reducing exposure of other organs to the medication, which improve effectiveness and minimize side effects. However, difficulties associated with aerosolized drug delivery to the lungs include drug losses in delivery devices and in the extrathoracic region of human upper airways. Intersubject variability of extrathoracic and thoracic drug deposition is a key issue as well and should be minimized. Improvements to respiratory drug delivery efficiency have been recently proposed by Dr. P. Worth Longest and Dr. Michael Hindle through the …


Methods For Identifying Acoustic Emissions From The Front Face Of A Small Piezoelectric Blower, Brad K. Solomon Dec 2012

Methods For Identifying Acoustic Emissions From The Front Face Of A Small Piezoelectric Blower, Brad K. Solomon

Theses and Dissertations

This thesis focuses on identifying acoustic noise generating components in piezoelectric blowers through transverse velocity measurements and the development of a numerical fluid model. Piezoelectric ceramics have proven useful for many industries and areas of research involving: high precision actuators, noise control, ultrasonic devices, and many other areas. As of late, a unique adaptation of piezoelectric ceramics is surfacing in the area of pumping and cooling. Air pumps that use these ceramics replace the traditional electric motor, resulting in lower power consumption, less moving parts, constant pressure gradients, lower overall weight, and a low profile. The current drawback of this …


Aerodynamic Analysis And Drag Coefficient Evaluation Of Time-Trial Bicycle Riders, Peter Nicholas Doval Dec 2012

Aerodynamic Analysis And Drag Coefficient Evaluation Of Time-Trial Bicycle Riders, Peter Nicholas Doval

Theses and Dissertations

Evaluation of drag coefficient often requires wind tunnel experiments and can be prohibitively expensive if not impossible for large objects or systems. Computational Fluid Dynamics (CFD) aerodynamic analysis offers an alternative approach and can be used as a very effective design tool in many industries: automotive, aerospace, marine, etc. The main objective of this research is to investigate feasibility of using non-contact digitizers for developing finite element models of large objects for subsequent CFD analysis. The developed methodology is applied to investigation of time-trial bicycle rider efficiency. Companies competing in this class of racing spend millions trying to optimize bicycle …


Investigation Of Heat Transfer And Flow Using Ribs Within Gas Turbine Blade Cooling Passage: Experimental And Hybrid Les/Rans Modeling, Sourabh Kumar Dec 2012

Investigation Of Heat Transfer And Flow Using Ribs Within Gas Turbine Blade Cooling Passage: Experimental And Hybrid Les/Rans Modeling, Sourabh Kumar

Theses and Dissertations

Gas turbines are extensively used for aircraft propulsion, land based power generation and various industrial applications. Developments in innovative gas turbine cooling technology enhance the efficiency and power output, with an increase in turbine rotor inlet temperatures. These advancements of turbine cooling have allowed engine design to exceed normal material temperature limits. For internal cooling design, techniques for heat extraction from the surfaces exposed to hot stream are based on the increase of heat transfer areas and on promotion of turbulence of the cooling flow. In this study, it is obtained by casting repeated continuous V and broken V shaped …


The Extraction Of Shock Waves And Separation And Attachment Lines From Computational Fluid Dynamics Simulations Using Subjective Logic, Matthew C. Lively Aug 2012

The Extraction Of Shock Waves And Separation And Attachment Lines From Computational Fluid Dynamics Simulations Using Subjective Logic, Matthew C. Lively

Theses and Dissertations

The advancement of computational fluid dynamics to simulate highly complex fluid flow situations have allowed for simulations that require weeks of computation using expensive high performance clusters. These simulations often generate terabytes of data and hinder the design process by greatly increasing the post-processing time. This research discusses a method to extract shock waves and separation and attachment lines as the simulation is calculating and as a post-processing step. Software agents governed by subjective logic were used to make decisions about extracted features in converging and converged data sets. Two different extraction algorithms were incorporated for shock waves and separation …


Measurements And Modeling Of Coal Ash Deposition In An Entrained-Flow Reactor, Ryan P. Blanchard Apr 2008

Measurements And Modeling Of Coal Ash Deposition In An Entrained-Flow Reactor, Ryan P. Blanchard

Theses and Dissertations

Coal plays a significant role in meeting the world's need for energy and will continue to do so for many years to come. Economic, environmental, and public opinion are requiring coal derived energy to be cleaner and operate in a more narrow window of operating conditions. Fouling and slagging of heat transfer surfaces continues to be a challenge for maintaining boiler availability and expanding the use of available fuels and operating conditions. The work incorporates existing information in the literature on ash deposition into a User-Defined Function (UDF) for a commercial comprehensive combustion and CFD code. Results from the new …


Parametric Optimization Design System For A Fluid Domain Assembly, Matthew Jackson Fisher Apr 2008

Parametric Optimization Design System For A Fluid Domain Assembly, Matthew Jackson Fisher

Theses and Dissertations

Automated solid modeling, integrated with computational fluid dynamics (CFD) and optimization of a 3D jet turbine engine has never been accomplished. This is due mainly to the computational power required, and the lack of associative parametric modeling tools and techniques necessary to adjust and optimize the design. As an example, the fluid domain of a simple household fan with three blades may contain 500,000 elements per blade passage. Therefore, a complete turbine engine that includes many stages, with sets of thirty or more blades each, will have hundreds of millions of elements. The fluid domains associated with each blade creates …


Incorporating Computational Fluid Dynamics Into The Preliminary Design Cycle, Jonathan Knighton Shelley Jul 2005

Incorporating Computational Fluid Dynamics Into The Preliminary Design Cycle, Jonathan Knighton Shelley

Theses and Dissertations

Industry is constantly looking for ways to bring new or derivative products to market in the shortest amount of time for the least amount of money. To accomplish this, Industry has adopted Computer Aided Engineering (CAX) tools that perform structural, flow, manufacturing, and cost analysis. The way in which a company utilizes these CAX tools can determine the success of these new products. One of these tools that Industry often struggles with in the preliminary design of a product is Computational Fluid Dynamics (CFD). Some of the challenges presented by CFD are the time it takes to create a CAD …


A Cad-Centric Approach To Cfd Analysis With Discrete Features, Matthew Lee King Oct 2004

A Cad-Centric Approach To Cfd Analysis With Discrete Features, Matthew Lee King

Theses and Dissertations

During the conceptual design stage several concepts are generated, and a few are selected for detailed analyses. CAD models from conceptual design often follow the "over-the-wall" approach for downstream analyses such as FEA, CFD, heat transfer, and vibrations. A CAD-centric approach will be applied to the CAD-to-CFD process to help industry in an ongoing quest to shorten the design cycle time. The CAD-centric approach consists of using the CAD model as a source of data for downstream applications such as mesh generation, and CFD setup. The CAD model used in the CAD-centric approach contains the geometry to be analyzed and …


Large Eddy Simulation Based Turbulent Flow-Induced Vibration Of Fully Developed Pipe Flow, Matthew Thurlow Pittard Oct 2003

Large Eddy Simulation Based Turbulent Flow-Induced Vibration Of Fully Developed Pipe Flow, Matthew Thurlow Pittard

Theses and Dissertations

Flow-induced vibration caused by fully developed pipe flow has been recognized, but not fully investigated under turbulent conditions. This thesis focuses on the development of a numerical Fluid-Structure Interaction (FSI) model that will help define the relationship between pipe wall vibration and the physical characteristics of turbulent flow. Commercial FSI software packages are based on Reynolds Averaged Navier-Stokes (RANS) fluid models, which do not compute the instantaneous fluctuations in turbulent flow. This thesis presents an FSI approach based on Large Eddy Simulation (LES) flow models, which do compute the instantaneous fluctuations in turbulent flow. The results based on the LES …