Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Masters Theses

2016

Discipline
Institution
Keyword

Articles 1 - 30 of 36

Full-Text Articles in Mechanical Engineering

Experimental And Numerical Study Of Dysphagia, Yash G. Potdar Dec 2016

Experimental And Numerical Study Of Dysphagia, Yash G. Potdar

Masters Theses

Dysphagia, meaning difficulty in swallowing, is a symptom of disease that occurs in young children and elderly people. It occurs particularly due to two reasons, weak neural network and/or deformities in oral section/s. The Helen DeVos Children’s Hospital’s Intensive Feeding Program takes care of children suffering from Dysphagia. In order to make the swallowing process easier and in some cases safer, thickener is added to the liquids. Depending on the requirement of thickness, the amount of thickener is varied. Although the directions to prepare the mixtures are given by the thickener product company, the required thickness ...


Development, Analysis, And Optimization Of A Swirl-Promoting Mean Flow Solution For Solid Rocket Motors, Andrew Steven Fist Dec 2016

Development, Analysis, And Optimization Of A Swirl-Promoting Mean Flow Solution For Solid Rocket Motors, Andrew Steven Fist

Masters Theses

This work demonstrates and analyses a new flow candidate for describing the internal gaseous motion in simulated rocket motors. The fundamental features of this solution include the conservation of key system properties also incorporated in the classic Taylor-Culick (TC) system (i.e. inviscid, axisymmetric, steady and rotational properties), while allowing for the development of a swirling velocity component. The work compares the new solution to the development and formulation of the classic TC system, ultimately identifying that both the new and classic solutions are special cases of the Bragg-Hawthorne equation. Following this development, the text then explores the development of ...


Effects Of Ultrasonic Transducers On Heat Transfer In Packed Particle Beds, David Patrick Moseley Dec 2016

Effects Of Ultrasonic Transducers On Heat Transfer In Packed Particle Beds, David Patrick Moseley

Masters Theses

The objective of this study was to determine the effects of ultrasonic transducers on heat transfer in a packed particle bed heat exchanger. Although substantial research has been devoted to ultrasound, and the associated improvements in heat transfer, data regarding the effects on packed particle beds is non-existent. This is of particular interest given the potential to improve heat transfer in a wide variety of packed particle bed systems. A 42.9% increase in the heat transfer rate was demonstrated as the result of improved fluid convection throughout the packed particle bed. Secondary effects, including acoustic cavitation, acoustic streaming and ...


Tracking Of Human Joints Using Twist And Exponential Map, Xiaodong Yang Dec 2016

Tracking Of Human Joints Using Twist And Exponential Map, Xiaodong Yang

Masters Theses

Motion tracking system in the home-based environment exhibits attractive advantages for stroke patients. Current methods suffer from incapability of accurately tracking movements with high degree of freedoms. Besides hardly meeting the predefined position during inertial sensor mounting also affects system's performance.

To tackle these challenges, a motion tracking system using twist and exponential map technology is developed in this paper. Firstly, a kinematic model for trunk and upper extremity is designed. Based on this model, twist and exponential map method which updates frames in their initial coordinates instead of transforming coordinates from one frame to another presents high efficiency ...


Dynamic Monitoring And Life Prediction Of Internal Strain-Gage Balances, David Leon Yoder Dec 2016

Dynamic Monitoring And Life Prediction Of Internal Strain-Gage Balances, David Leon Yoder

Masters Theses

Wind tunnel test customers continue to push the limits by producing air vehicle designs that produce high aerodynamic loads at the desired test conditions. These loads are a combination of steady aerodynamic, unsteady aerodynamic, and inertial forces. A methodology to monitor the health of a wind tunnel strain-gage balance has been developed. The objective of this methodology is to define the stress limits of the balance and monitor these limits so the balance can be safely tested without failure of the balance. A balance failure could result in costly damage to the wind tunnel model, support system, and the wind ...


Developing Predictive Models For Upper Extremity Post–Stroke Motion Quality Estimation Using Decision Trees And Bagging Forest, Sarvenaz Chaeibakhsh Aug 2016

Developing Predictive Models For Upper Extremity Post–Stroke Motion Quality Estimation Using Decision Trees And Bagging Forest, Sarvenaz Chaeibakhsh

Masters Theses

Stroke is one of the leading causes of long–term disability. Approximately twothirds of stroke survivors require long-term rehabilitation, which suggests the importance of understanding the post-stroke recovery process during his activities of daily living. This problem is formulated as quantifying and estimating the poststroke movement quality in real world settings. To address this need, we have developed an approach that quantifies physical activities and can evaluate the performance quality. Wearable accelerometer and gyroscope are used to measure the upper extremity motions and to develop a mathematical framework to objectively relates sensors’ data to clinical performance indices. In this article ...


Laser Diagnostics Of C2h4 And Ch4 From N-Butane Pyrolysis, Liu Su Aug 2016

Laser Diagnostics Of C2h4 And Ch4 From N-Butane Pyrolysis, Liu Su

Masters Theses

Combustion of fossil fuels remains the dominant source of energy which enables us sustain thrive in this planet. Meanwhile, the negative effects of burning fossil fuels, however, are devastating our climate and environment. Eliminating those negative effects while attaining energy supply from fossil fuels becomes urgent and prominent. It is, nevertheless, impossible without a thorough understanding of the combustion process.

Experimental approach remains one of the dominating approaches to study combustion despite the growing interest in numerical approach. The development of workstations and massive supercomputers is providing the computation ability that one has never imaged. Nevertheless, it still appears difficult ...


Tribological Testing And Analysis Of Ionic Liquids As Candidate Anti-Wear Additives For Next-Generation Engine Lubricants, William Charles Barnhill May 2016

Tribological Testing And Analysis Of Ionic Liquids As Candidate Anti-Wear Additives For Next-Generation Engine Lubricants, William Charles Barnhill

Masters Theses

In this work, fourteen ionic liquids (ILs) were assayed as potential next-generation engine oil additives. After screening for corrosion, thermal stability and oil solubility, candidate additives were subjected to friction and wear tests in both boundary and mixed regime lubrication. While each IL demonstrated friction and wear reduction compared to base oil without any additives, oil miscible ILs tetraoctylphosphonium bis 2-ethylhexyl phosphate ([P8888][DEHP]) and trioctylammonium bis 2-ethylhexylphosphate ([N888H][DEHP]) were the best performers in bench tests with a XX% and XX% improvement in wear over the base oil respectively. Each of these ILs excellent solubility and superior performance was ...


Measurement Of Water Ice Accumulation On A First Surface Gold Mirror Under Cryogenic, High-Vacuum Conditions, William Hayden Stevens May 2016

Measurement Of Water Ice Accumulation On A First Surface Gold Mirror Under Cryogenic, High-Vacuum Conditions, William Hayden Stevens

Masters Theses

Spacecraft optical components must be tested in vacuum chambers in order to achieve “space-like” conditions on earth. To simulate the low temperatures experienced in space, optical components are often cryogenically cooled in the vacuum chamber. Outgassing of contaminants, such as water molecules, from the metal walls of the vacuum chamber occur under high vacuum conditions. These free water molecules accumulate and freeze on the cryogenic optical surfaces, which affects performance and reflectivity.

A multiple beam interference set-up was used to measure the accumulation of a water ice film on a first surface gold mirror under cryogenic, high vacuum-conditions. Zeolite molecular ...


Improving Ventricular Catheter Design Through Computational Fluid Dynamics, Sofy Hefets Weisenberg May 2016

Improving Ventricular Catheter Design Through Computational Fluid Dynamics, Sofy Hefets Weisenberg

Masters Theses

Cerebrospinal fluid (CSF) shunts are fully implantable medical devices that are used to treat patients suffering from conditions characterized by elevated intracranial pressure, such as hydrocephalus. In cases of shunt failure or malfunction, patients are often required to endure one or more revision surgeries to replace all or part of the shunt. One of the primary causes of CSF shunt failure is obstruction of the ventricular catheter, a component of the shunt system implanted directly into the brain's ventricular system. This work aims to improve the design of ventricular catheters in order to reduce the incidence of catheter obstruction ...


Improved Modeling Of Atmospheric Entry For Meteors With Nose Radii Between 5cm And 10m, Jakob Dale Brisby May 2016

Improved Modeling Of Atmospheric Entry For Meteors With Nose Radii Between 5cm And 10m, Jakob Dale Brisby

Masters Theses

Atmospheric entry studies typically look closely at the peak heating rate that a body encounters during its trajectory. This is an extremely important phenomenon to study because it allows engineers to determine if a trajectory is possible with given materials and craft design specifications. It also allows designers to choose what type of method will be used for mitigating the enormous heat fluxes during entry. In general, it is accepted that during the super-sonic flight regime the body will continue to be heated and an ablative heat shield often is used to deal with these heating processes. The theory outlined ...


Jet Flow Validation Of Positron Emission Particle Tracking Utilizing High Speed Video, Seth Thomas Langford May 2016

Jet Flow Validation Of Positron Emission Particle Tracking Utilizing High Speed Video, Seth Thomas Langford

Masters Theses

Positron Emission Particle Tracking (PEPT) generates 4D Lagrangian particle trajectories and is used to evaluate flow in granular media and complex geometries where optical interrogation methods are not possible. A Multi-Particle PEPT (Multi-PEPT) approach was developed by the University of Tennessee Thermal Fluids Group capable of finding and tracking many particles simultaneously to extend the utility of the PEPT method. This thesis compares 4,014 trajectories generated using the Multi-PEPT method with 3,055 trajectories generated from High Speed Video (HSV) data. All trajectories are acquired in an acrylic test section with water flow using resin beads. The flow geometry ...


Tunable Plasmonic Thermal Emitter Using Metal-Coated Elastomeric Structures, Robert Zando Jan 2016

Tunable Plasmonic Thermal Emitter Using Metal-Coated Elastomeric Structures, Robert Zando

Masters Theses

This project was focused on the creation of a gold-coated grating structure capable of inducing a surface plasmon polariton within the mid-infrared region, enhancing emissions at specific wavelengths based on the grating periodicity. The grating structure was formed on a silicone elastomer, polydimethylsiloxane (PDMS), in order to give the structure, the ability to have the periodicity dimensions of the grating altered by applying a stress, thereby changing the location of the emission enhancement, giving the device the potential to be used as an infrared strain sensor.

Creation of the structure employed a top-down, micro-scale fabrication technique referred to as Direct ...


Design And Analysis Of An Axisymmetric Aerospike Supersonic Micro-Nozzle For A Refrigerant-Based Cold-Gas Propulsion System For Small Satellites, Abdalla Ali Bani Jan 2016

Design And Analysis Of An Axisymmetric Aerospike Supersonic Micro-Nozzle For A Refrigerant-Based Cold-Gas Propulsion System For Small Satellites, Abdalla Ali Bani

Masters Theses

"The cold-gas propulsion system being developed by M-SAT requires improvements to its original nozzle design. This study documents the research, design, and analysis of a supersonic plug nozzle concept that could be integrated to the refrigerant-based cold-gas propulsion system to possibly improve its performance. As documented in this thesis, CFD analysis showed that the outlined nozzle design method resulted in a feasible nozzle concept that has the ability to out-perform a conventional nozzle of the same area ratio. The flow-fields and thrust of the aerospike nozzle, for the full and truncated nozzles, were investigated. The purpose of this study is ...


Composite Model Representation For Computer Aided Design Of Functionally Gradient Materials, Fangquan Wang Jan 2016

Composite Model Representation For Computer Aided Design Of Functionally Gradient Materials, Fangquan Wang

Masters Theses

"Functionally Gradient Materials (FGMs) feature smooth transition from one material to another within a single object. FGMs modeling is considered to be one of the new challenges in Computer Aided Design (CAD) area. To overcome this challenge, this thesis presents a composite approach to model FGMs. The input in STL format can be meshed and voxelized in FGMs modeling system. The material composition in each voxel can be generated from multiple different types of control features. And LTI filters including Gaussian Filter and Average Filter are applied to blur default material features in order to generate FGMs inside models. The ...


Design And Fabrication Of A System For The Additive Manufacturing Of Transparent Glass, Luke John Gilbert Jan 2016

Design And Fabrication Of A System For The Additive Manufacturing Of Transparent Glass, Luke John Gilbert

Masters Theses

"Despite glass' prevalence in the scientific and engineering community, very little research has been conducted attempting to additively manufacture (AM) glass. Even less research has been done on optically transparent glass. Glass’ material properties make it ineligible for most AM processes if the end result is to be transparent. Even small gas inclusions can cause large amounts of scattering. Additively manufacturing transparent glass brings the advantages found in other AM processes with the added benefit of having optical properties better than those found in polymers. Additively manufacturing glass also allows the optical properties of transparent parts to vary arbitrarily. This ...


The Evaluation Of Sequential Optimization And Reliability Analysis, Guannan Liu Jan 2016

The Evaluation Of Sequential Optimization And Reliability Analysis, Guannan Liu

Masters Theses

"Sequential Optimization and Reliability Assessment (SORA) has been used for more than one decade for reliability-based design (RBD), but comprehensive theoretical studies on its performance have not been conducted. Further investigations on its performance are still needed. The objective of this thesis is to evaluate the performance of SORA for various testing problems. The performance of SORA evaluated in this thesis includes (1) accuracy, (2) efficiency, and (3) convergence behavior or robustness with numerical testing problems. SORA is evaluated with comparison with other major RBD methodologies. The testing problems are in different scales (numbers of design variables, random variables, and ...


Mixing Dynamics In Municipal Water Storage Tanks, Pramod Narayan Bangalore Jan 2016

Mixing Dynamics In Municipal Water Storage Tanks, Pramod Narayan Bangalore

Masters Theses

"The purpose of this study is to investigate the effects of different control variables on mixing in municipal water storage tanks using Computational Fluid Dynamics(CFD) solutions with ANSYS FLUENT for isothermal, positively and negatively buoyant inflow conditions. Poor mixing of old water and new water leads to dead zone formation, which when introduced in the distribution system can cause major water quality issues. Data for this study was generated using Multiphase CFD flow modeling technique using Volume of Fluid (VOF) approach with species transport. The vessel was considered to be mixed when Coefficient of Variation (COV) dropped below 0 ...


Effect Of Sparse-Build Internal Structure On Performance Of Fused Deposition Modeling Parts, Shixuan Meng Jan 2016

Effect Of Sparse-Build Internal Structure On Performance Of Fused Deposition Modeling Parts, Shixuan Meng

Masters Theses

"Fused deposition modeling (FDM) technology has been used in additive manufacturing for years and is able to significantly reduce both manufacturing time and cost for production tooling and end-use parts. Autoclave molding is one of the conventional tools used to produce composite parts. In autoclave molding, the soft composite material is positioned on the molding tool, and then subjected to vacuum and elevated temperatures to facilitate the curing of the resin. With additive manufacturing (AM), it is possible to fabricate the molding tool with a sparse internal structure, thereby reducing the fabrication time and cost compared to a solid tool ...


Synthesis And Photonic Sintering Of Bioresorbable Zinc Nanoparticle Ink For Transient Electronics Manufacturing, Bikram K. Mahajan Jan 2016

Synthesis And Photonic Sintering Of Bioresorbable Zinc Nanoparticle Ink For Transient Electronics Manufacturing, Bikram K. Mahajan

Masters Theses

"Zinc is an essential 'trace element' that supports immune systems, and is required for DNA synthesis, cell division, and protein synthesis. Zinc nanoparticles (Zn NP) has antibacterial properties and potential to be used in biodegradable printed electronics devices. The research presented here is about the synthesis of Zn NP and their potential use in transient electronics devices. In Paper 1, a technique of room temperature synthesis of Zn NP is reported using ball milling. Controlled amount of PVP was mixed in the solvent to stabilize the Zn particles and minimize cold welding during milling. The size of the produced Zn ...


Design Of An Adaptive Force And Stiffness Controlled Compliant Device For Robotic Polishing, Mohammad Masud Parvez Jan 2016

Design Of An Adaptive Force And Stiffness Controlled Compliant Device For Robotic Polishing, Mohammad Masud Parvez

Masters Theses

"Polishing is a repetitive task done in an unhealthy environment. Often more than half of the manufacturing time is required to polish a die. The manual polishing process is a tedious work actively rely on a skilled human worker. Industrial Robot has replaced the human in performing these tasks. For robotic polishing to control the polishing force, an active compliant device is used. Due to the compressibility of air, a pneumatic system is preferred as the actuator of the device. The force of the actuator is controlled by regulating air pressure in both chambers of the cylinder. However, to improve ...


A Linear Matrix Inequality-Based Approach For The Computation Of Actuator Bandwidth Limits In Adaptive Control, Daniel Robert Wagner Jan 2016

A Linear Matrix Inequality-Based Approach For The Computation Of Actuator Bandwidth Limits In Adaptive Control, Daniel Robert Wagner

Masters Theses

"Linear matrix inequalities and convex optimization techniques have become popular tools to solve nontrivial problems in the field of adaptive control. Specifically, the stability of adaptive control laws in the presence of actuator dynamics remains as an important open control problem. In this thesis, we present a linear matrix inequalities-based hedging approach and evaluate it for model reference adaptive control of an uncertain dynamical system in the presence of actuator dynamics. The ideal reference dynamics are modified such that the hedging approach allows the correct adaptation without being hindered by the presence of actuator dynamics. The hedging approach is first ...


Engine Sound Simulation And Generation In Driving Simulator, Shuang Wu Jan 2016

Engine Sound Simulation And Generation In Driving Simulator, Shuang Wu

Masters Theses

"Simulating a driving environment that provides engine sound as auditory feedback to the driver is a challenging task due to the complexity of engine sound, a wide range of operating speeds, and repeated sound clicking during playback. This thesis describes a method of engine sound simulation and generation for a driving simulator. By analyzing sample sounds, spectral modeling synthesis was used to decompose the sound samples into deterministic and stochastic components. Then, the modeled deterministic and stochastic signals were employed to resynthesize the sounds. To represent engine sounds not available in the recorded database, sound interpolation was applied to two ...


Addressing The Influence Of Carbon Monoxide On The Behavior Of An Hcci Engine, Allen Charles Ernst Jan 2016

Addressing The Influence Of Carbon Monoxide On The Behavior Of An Hcci Engine, Allen Charles Ernst

Masters Theses

"Homogeneous Charge Compression Ignition (HCCI) may be the next leap of improvement to internal combustion engines due to its decreased emissions and improved engine efficiencies. However, such a jump possesses challenges owing to its strict reliance on the inherent physics that dictate start of combustion and limit the reach of stable operation. This work investigates the role and fundamental influence of carbon monoxide on the cycle-to-cycle combustion dynamics present in the region of incomplete combustion that frames the limited HCCI operating region. An improved understanding will open doors to enhanced control methodologies and an expanded stable operating envelope. A constant ...


Effect Of Build Parameters On Mechanical Properties Of Ultem 9085 Parts By Fused Deposition Modeling, Krishna Prasanth Motaparti Jan 2016

Effect Of Build Parameters On Mechanical Properties Of Ultem 9085 Parts By Fused Deposition Modeling, Krishna Prasanth Motaparti

Masters Theses

"Additive manufacturing is a fabrication technique that is used to build components by depositing material in a layer-by-layer manner. Fused Deposition Modeling (FDM) is one of the additive manufacturing techniques which is widely used for prototyping and production applications of thermoplastic components. In load bearing applications, the flexural and compression forces often coexist. In order to avoid failure under these loads, it is essential to study the mechanical properties of the components fabricated by FDM. The main focus of this research is to study the mechanical properties of the fabricated components and to comprehend their dependence on various build parameters ...


Numerical Analysis Of Flexural Slip During Viscoelastic Buckle Folding, Davi Rodrigues Damasceno Jan 2016

Numerical Analysis Of Flexural Slip During Viscoelastic Buckle Folding, Davi Rodrigues Damasceno

Masters Theses

"Flexural slip is considered to be an important folding mechanism contributing in the development of different folds such as chevron, and kink-band buckle folds. Various filed studies have provided a general conceptual and qualitative understanding of flexural slip. However, quantitative evidence of the importance of the flexural slip mechanism during fold evolution is sparse, as the actual amount of surface parallel displacement, and timing, is difficult to measure accurately, due to the lack of suitable strain markers.

In this study 2D finite element analysis is used to overcome these disadvantages and to simulate flexural slip during viscoelastic buckle folding. Variations ...


Prediction Of Surface Roughness In Abrasive Waterjet Cutting Of Graphite Composite Using Response Surface Methodology, Prabhakar Bala Jan 2016

Prediction Of Surface Roughness In Abrasive Waterjet Cutting Of Graphite Composite Using Response Surface Methodology, Prabhakar Bala

Masters Theses

"In the present work, surface roughness after machining of composite material was the main focus of study. Response surface methodology with Box- Behnken experimental design was applied in predicting the surface roughness (Ra) of abrasive waterjet cut 1-inch-thick graphite/epoxy composite. Second order response equations for Ra were generated with minitab, a statistical software as a function of pressure, traverse speed and isolated abrasive mesh size. Influence of each of these factors on the response were analyzed with 3D response surface plots. Abrasive mesh size was also found be a factor influencing Ra along with traverse speed and ...


Hybrid Manufacturing Processes For Fusion Welding And Friction Stir Welding Of Aerospace Grade Aluminum Alloys, Megan Alexandra Gegesky Jan 2016

Hybrid Manufacturing Processes For Fusion Welding And Friction Stir Welding Of Aerospace Grade Aluminum Alloys, Megan Alexandra Gegesky

Masters Theses

"Friction stir welding and processing can provide for joints in aerospace grade aluminum alloys that have preferable material properties as compared to fusion welding techniques. Aerospace grade aluminum alloys such as AA2024-T3 and AA7075-T6 are considered non-weldable by traditional fusion welding techniques. Improved mechanical properties over previously used techniques are usually preferable for aerospace applications. Therefore, by combining traditional fusion welding and friction stir processing techniques, it could be plausible to create more difficult geometries in manufactured parts instead of using traditional techniques. While this combination of fusion welding and friction stir processing is not a new technology, its introduction ...


Multifunctional Wearable Epidermal Device For Physiological Signal Monitoring In Sleep Study, J V M S Avinash Kankipati Jan 2016

Multifunctional Wearable Epidermal Device For Physiological Signal Monitoring In Sleep Study, J V M S Avinash Kankipati

Masters Theses

"Sleep is the essential part of life. Thousands of people are suffering from different kinds sleep disorders. Clinical diagnosing and treating for such disorders are costly, painful and quite sluggish. To reach the demand many commercial products are into the market to encourage home based sleep studies using portable devices. These portable devices are limited in use, cannot be handled easily and quite costly. Advancements in technology miniaturized these portable devices to wearable devices to make them convenient and economical. Elastic, soft and thin silicon membrane with physical properties well matched with that of the epidermis provides conformal and robust ...


Laser Sintering And Aerosol Printing Of Conductive Nanoparticles, Mahati Guntupalli Jan 2016

Laser Sintering And Aerosol Printing Of Conductive Nanoparticles, Mahati Guntupalli

Masters Theses

"Fabrication and printing of nanoparticles is an essential step in the manufacturing of low cost- high efficiency electronic devices. High material costs of noble metal particles necessitates the investigation for a potential substituent. Conventional methods of manufacturing are time consuming and uneconomical, thus intense research is being done to employ new methods for cost, time and space effective manufacturing process.

The first part of the thesis presents the fabrication of Copper nanoparticles. As an economical substituent for noble metal nanoparticles, Copper nanoparticles satisfy various properties as conductive inks, simultaneously suffering from the vital problem of oxidation. The acceleration effects of ...