Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 12 of 12

Full-Text Articles in Mechanical Engineering

Thermal Conductivity And Mechanical Properties Of Interlayer-Bonded Graphene Bilayers, Afnan Mostafa Nov 2023

Thermal Conductivity And Mechanical Properties Of Interlayer-Bonded Graphene Bilayers, Afnan Mostafa

Masters Theses

Graphene, an allotrope of carbon, has demonstrated exceptional mechanical, thermal, electronic, and optical properties. Complementary to such innate properties, structural modification through chemical functionalization or defect engineering can significantly enhance the properties and functionality of graphene and its derivatives. Hence, understanding structure-property relationships in graphene-based metamaterials has garnered much attention in recent years. In this thesis, we present molecular dynamics studies aimed at elucidating structure-property relationships that govern the thermomechanical response of interlayer-bonded graphene bilayers.

First, we present a systematic and thorough analysis of thermal transport in interlayer-bonded twisted bilayer graphene (IB-TBG). We find that the introduction of interlayer C-C …


Fabrication Of Binder-Free Electrodes Based On Graphene Oxide With Cnt For Decrease Of Resistance, Di Zhang Dec 2020

Fabrication Of Binder-Free Electrodes Based On Graphene Oxide With Cnt For Decrease Of Resistance, Di Zhang

Masters Theses

In electrode double layer capacitor (EDLC), electrodes usually contain binder materials to provide adhesion between electrode materials. However, binder materials usually bring unwanted resistances to the component due to their non-conductivity properties and the occupation of ion cavities. The purpose of this thesis is to demonstrate the feasibility of fabricating electrodes for EDLCs by using carbon nanotubes (CNTs) and graphene oxide (GO) without using any binding materials. At the same time, investigating the binder-free electrode’s electrochemical properties and make an assumption of its potential application in the future.

The slurry of binder-free electrodes was fabricated by ultrasonicating water suspended CNTs …


Topology Network Optimization Of Facility Planning And Design Problems, Ravi Ratan Raj Monga Oct 2019

Topology Network Optimization Of Facility Planning And Design Problems, Ravi Ratan Raj Monga

Masters Theses

The research attempts to provide a graphical theory-based approach to solve the facility layout problem. Which has generally been approached using Quadratic Assignment Problem (QAP) in the past, an algebraic method. It is a very complex problem and is part of the NP-Hard optimization class, because of the nonlinear quadratic objective function and (0,1) binary variables. The research is divided into three phases which together provide an optimal facility layout, block plan solution consisting of MHS (material handling solution) projected onto the block plan. In phase one, we solve for the position of departments in a facility based on flow …


Electroplating Of Copper On Tungsten Powder, Richard Berdos Oct 2018

Electroplating Of Copper On Tungsten Powder, Richard Berdos

Masters Theses

Strengthening, resistant and shielding properties, to name a few, can be achieved by implementing a surface material coating onto an engineering component. Various elements of these compounded parts can augment the functionality of the part, such as, increased life time and more interactive surfaces. Tungsten has proven to be a challenge to plate with other metals, but if done correctly, the results can allow for the cold spray of tungsten. Cold spraying tungsten particles alone provides a challenge because the powder is too hard and instead of adhering, it erodes the surface it is attempting to plate. Coating tungsten in …


A Numerical Flutter Predictor For 3d Airfoils Using The Onera Dynamic Stall Model, Pieter Boersma Oct 2018

A Numerical Flutter Predictor For 3d Airfoils Using The Onera Dynamic Stall Model, Pieter Boersma

Masters Theses

To be able to harness more power from the wind, wind turbine blades are getting longer. As they get longer, they get more flexible. This creates issues that have until recently not been of concern. Long flexible wind turbine blades can lose their stability to flow induced instabilities such as coupled-mode flutter. This type of flutter occurs when increasing wind speed causes a coupling of a bending and a torsional mode, which create limit cycle oscillations that can lead to blade failure. To be able to make the design of larger blades possible, it is important to be able to …


Streamwise Flow-Induced Oscillations Of Bluff Bodies - The Influence Of Symmetry Breaking, Tyler Gurian Jul 2018

Streamwise Flow-Induced Oscillations Of Bluff Bodies - The Influence Of Symmetry Breaking, Tyler Gurian

Masters Theses

The influence of symmetry breaking on the flow induced oscillations of bluff bodies in the steamwise direction is studied. First, a series of experiments is conducted on a one-degree-of-freedom circular cylinder allowed to exhibit pure translational motion in the streamwise direction over a range of reduced velocities, 1.4 < U* < 4.4, corresponding to a Reynolds number range of 970 < Re < 3370. Two distinct regions of displacements were observed in reduced velocity ranges of 1.6 < U* < 2.5 and 2.75 < U* < 3.85. Measured force coefficients in the drag and lift direction were examined, along with the wake visualization, through the range of reduced velocities, to infer the resulting wake modes. A new Alternating Symmetric (AS) mode was found. This transition from symmetric to AS shedding occurred near the end of the first region of response. Similar tests were run with a square prism in the parameter space of 2.4 < U* < 5.8 and 757 < Re < 1900 over angles of incidence of 0° ≤ α ≤ 45°. A distinct region of lock-in is observed for α = 0°, 2.5°, 5°, 7.5° over 3.2 < U* < 5.4 for α = 0°, and decreasing with increasing α. The wake structures were found to be roughly symmetric for α = 0°, but transitioned towards asymmetry …


Non-Equispaced Fast Fourier Transforms In Turbulence Simulation, Aditya M. Kulkarni Oct 2017

Non-Equispaced Fast Fourier Transforms In Turbulence Simulation, Aditya M. Kulkarni

Masters Theses

Fourier pseudo-spectral method on equispaced grid is one of the approaches in turbulence simulation, to compute derivative of discrete data, using fast Fourier Transform (FFT) and gives low dispersion and dissipation errors. In many turbulent flows the dynamically important scales of motion are concentrated in certain regions which requires a coarser grid for higher accuracy. A coarser grid in other regions minimizes the memory requirement. This requires the use of Non-equispaced Fast Fourier Transform (NFFT) to compute the Fourier transform, by solving a system of linear equations.

To achieve similar accuracy, the NFFT needs to return more Fourier coefficients than …


Electroless Deposition & Electroplating Of Nickel On Chromium-Nickel Carbide Powder, Jeffrey Rigali Oct 2017

Electroless Deposition & Electroplating Of Nickel On Chromium-Nickel Carbide Powder, Jeffrey Rigali

Masters Theses

Engineered components can gain desirable properties when coated with surface materials. Wear-resistant coatings can improve the performance of contacting surfaces and allow for an extended life of the parts. Hard chromium has been the plating material of choice for certain wear and corrosion- resistant coatings because of its desirable combination of chemical resistance, adhesion, and mechanical properties. However, hexavalent chromium, a component of the process for applying hard chromium coatings, has been recognized by the EPA as having hazardous health and environmental impacts. Existing and planned environmental regulations restricts the use of process chemicals containing hexavalent chromium ions. This substantiates …


Improving The Efficiency Of Wind Farm Turbines Using External Airfoils, Shujaut Bader Oct 2017

Improving The Efficiency Of Wind Farm Turbines Using External Airfoils, Shujaut Bader

Masters Theses

Wind turbine efficiency typically focuses on the shape, orientation, or stiffness of the turbine blades. In this thesis, the focus is instead on using static fixed airfoils in proximity to the wind turbine to control the airflow coming out of the turbine. These control devices have three beneficial effects. (1) They gather air from “higher up” where the air is moving faster on average (and therefore has more kinetic energy in it). (2) They throw the used (and slowed down air) downwards. This means that any turbines in the wind farm behind the lead turbines do not get “stale” air. …


Incorporating Seasonal Wind Resource And Electricity Price Data Into Wind Farm Micrositing, Timothy A. Pfeiffer Jul 2017

Incorporating Seasonal Wind Resource And Electricity Price Data Into Wind Farm Micrositing, Timothy A. Pfeiffer

Masters Theses

Currently, most micrositing techniques aim to maximize annual energy production (AEP) or minimize cost of energy (COE) with no direct regard to revenue. This research study developed a method that utilizes the seasonal electricity price and wind data to microsite wind farms in terms of profitability. To accomplish this, six candidate wind farms with differing layouts and spacing were selected at a given location. They were then simulated using a wake modeling software to produce expected power outputs at different wind speeds, wind directions, and turbulence intensities. By interpolating the power output tables with wind data, a power time-series was …


Numerical Simulation Of High Velocity Impact Of A Single Polymer Particle During Cold Spray Deposition, Sagar P. Shah Nov 2016

Numerical Simulation Of High Velocity Impact Of A Single Polymer Particle During Cold Spray Deposition, Sagar P. Shah

Masters Theses

Abstract

The cold spray process is an additive manufacturing technology primarily suited for ductile metals, and mainly utilized in coating surfaces, manufacturing of freeform parts and repair of damaged components. The process involves acceleration of solid micro-particles in a supersonic gas flow and coating build-up by bonding upon high velocity impact onto a substrate. Coating deposition relies on the kinetic energy of the particles. The main objective of this study was to investigate the mechanics of polymer cold spray process and deformation behavior of polymers to improve technological implementation of the process.

A finite element model was created to simulate …


Buckling Of Particle-Laden Interfaces, Theo Dias Kassuga Nov 2014

Buckling Of Particle-Laden Interfaces, Theo Dias Kassuga

Masters Theses

We study the buckling of an oil-water interface populated by micron-sized latex particles using a Langmuir trough. We extend pre-existing results to the micron-range with different capillary length and compare the experimental data to the existing theoretical framework. An unexpected trend for the dominant wavelength of buckling is observed, suggesting that there is a transition between regimes in the micron-range. A mechanism for the new regime is proposed. Cascading is reported, as well as novel kinds of transition between wavelengths within the same particle raft. Lastly, the effect of compression on the macroscopic arrangement of particles is investigated, as well …