Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

LSU Master's Theses

Heat Transfer

Publication Year

Articles 1 - 3 of 3

Full-Text Articles in Mechanical Engineering

Heat Transfer Study Of Porous Media With A Temperature Jump Condition, Pravin Kumar Jan 2015

Heat Transfer Study Of Porous Media With A Temperature Jump Condition, Pravin Kumar

LSU Master's Theses

Conjugate heat transfer in a porous media is investigated with a temperature jump condition obtained from kinetic gas theory. The temperature jump appears alongside flow boundary condition when the pressure is low, and considered to be in non-continuum regime. This investigation focuses on both one-dimensional and two-dimensional porous media models. The length scale of the pores is 100 microns. The temperature is ambient, and the pressure is low enough to reach the slip-flow regime. The thermal behavior of porous media is investigated using a slot model with a gas trapped between two solid blocks. Aluminum oxide and air are considered …


Radiation Heat Transfer In A Particulate Medium Using A Ray Tracing Method, Manish B. Patil Jan 2015

Radiation Heat Transfer In A Particulate Medium Using A Ray Tracing Method, Manish B. Patil

LSU Master's Theses

In the present work, a complete 3D simulation of ray tracing model is developed for studying the radiation heat transfer, associated with laser based additive manufacturing, in both thick and thin particulate beds by using the Monte Carlo method. Additional program is developed for creating different types of packing structures such as simple cubic, rhombohydral and random packing. The scattering mechanisms in the particulate beds for large opaque spheres are evaluated using the specular and diffuse reflection methods. Further, a novel approach has been added to the model to include isotropic, forward and backward scattering mechanisms for a medium which …


Aerodynamic And Heat Transfer Studies In A Combustor-Fired, Fixed-Vane Cascade With Film Cooling, James William Post Jan 2009

Aerodynamic And Heat Transfer Studies In A Combustor-Fired, Fixed-Vane Cascade With Film Cooling, James William Post

LSU Master's Theses

Pressure and heat transfer data has been generated in a high-pressure, high-temperature vane cascade. This cascade differs from many others seen in typical low-pressure facilities using room temperature air. Primarily, a natural gas-fired combustor generates realistic turbulence profiles in the high-temperature exhaust gases that pass through the vane cascade. The fixed-vane cascade test sections have film cooling holes machined into the surfaces in arrangements that closely model configurations seen in real-life first-row nozzle guide vanes (NGV). Theoretical coolant jet-to-crossflow blowing ratios (M) range from 0.5 to 3.0. Coolant jet-to-crossflow theoretical density ratios (DR) used for typical tests vary between 1.0 …