Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

LSU Doctoral Dissertations

Atomic layer deposition

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Mechanical Engineering

Novel Syntheses And Surface Modifications Of Electrode Materials For Superior Lithium-Ion Batteries, Jianqing Zhao Jan 2014

Novel Syntheses And Surface Modifications Of Electrode Materials For Superior Lithium-Ion Batteries, Jianqing Zhao

LSU Doctoral Dissertations

Rechargeable lithium-ion battery is one of the most promising energy conversion and storage systems that offers high energy and powder densities, long service life and assuring safety. Performance of lithium-ion batteries crucially relies on electrochemical characteristics of electrode materials, i.e., anode and cathode materials. This dissertation work aims at developing novel electrode materials with high capacity, excellent cycling stability and remarkable rate capability for next-generation lithium-ion batteries. The effects of surface modifications for LiMn2O4 cathode materials are studied by depositing ultrathin conformal amphoteric oxides via atomic layer deposition (ALD). In the case of ZnO coating, the thickness of ZnO ...


Novel Surface Modifications And New Nanostructured Titania Synthesis For High-Performance Lithium-Ion Batteries And Solar Cells, Dongsheng Guan Jan 2012

Novel Surface Modifications And New Nanostructured Titania Synthesis For High-Performance Lithium-Ion Batteries And Solar Cells, Dongsheng Guan

LSU Doctoral Dissertations

With the rapid development of electronic devices, electrical vehicles and space aerocrafts, rechargeable lithium-ion batteries (LIBs) have attract numerous interests due to high energy and power density, long lifespan and low self discharge. Spinel LiMn2O4 is a promising cathode material for novel LIBs thanks to high working potential, easy synthesis and low cost, but its severe capacity drop mostly due to inevitable reactions with electrolytes is a drawback. In the dissertation, ultrathin and highly-conformal Al2O3 coatings are grown on the surface of micro-sized and nanosized LiMn2O4 with atomic layer deposition. Thickness of Al2O3 ALD coatings can be precisely controlled by ...