Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Mechanical Engineering

Energetic Nanoparticles As Fuel Additives For Enhanced Performance In Propulsion Systems, Srinibas Karmakar Jan 2012

Energetic Nanoparticles As Fuel Additives For Enhanced Performance In Propulsion Systems, Srinibas Karmakar

LSU Doctoral Dissertations

Biofuels are currently being explored as a carbon-neutral fuel alternative to petroleum-based fuels. However, biofuels such as ethanol has lower energy density (~27MJ/kg) relative to petroleum fuels (~ 45 MJ/kg). Adding high-energy density particles (such as boron with heating value of ~ 58.5 MJ/kg) to biofuels can generate fuel slurry with higher energy density than the base fuel, and represents a potential strategy toward making biofuels more viable. However, the combustion of boron is inhibited (specifically, the ignition is delayed) by the initial presence of an oxide layer, and its high evaporation and boiling temperatures. The present study investigates the …


Turbine Blade Internal Cooling: Trailing Edge, Coolant-Passage Entry, Bend Effect And Improvement In Thermal Performance, Krishnendu Saha Jan 2012

Turbine Blade Internal Cooling: Trailing Edge, Coolant-Passage Entry, Bend Effect And Improvement In Thermal Performance, Krishnendu Saha

LSU Doctoral Dissertations

Efficient cooling of gas turbine blade is imperative for safe operation of the gas turbine engine at high temperatures. In the present work, two converging lattice structures suitable for trailing edge applications are tested and their performance is compared with a conventional pin-fin configuration. Another constant cross section lattice structure is tested to see the cooling efficiency of lattice channels with different number of sub-channels. Converging lattice structures show higher heat transfer enhancement and comparable or higher thermal performance than traditional pin-fin cooling used in gas turbine trailing edge. The highest pressure drop incurred in a multi-pass channel is at …


Multifunctional Carbon/Epoxy Glass Microballons Nanocomposite, Ephraim Fentahun Zegeye Jan 2012

Multifunctional Carbon/Epoxy Glass Microballons Nanocomposite, Ephraim Fentahun Zegeye

LSU Doctoral Dissertations

Glass microballoons have high strength, low thermal and electrical properties, and provide closed cell porosity to reduce the density of composites. On the other hand, filamentous carbon nanostructures have excellent mechanical, thermal, and electrical properties that make them naturally multifunctional. This work presents a method of developing low-density multifunctional nanocomposites utilizing glass microballoons and carbon nanostructures. Two different approaches are investigated. In the first approach, carbon nanotubes (CNTs) are used as a filler material to fabricate nanocomposites containing glass microballoons (CNT-syntactic foams). The weight percent of CNTs is varied from 0 to 0.8 wt%. In this method, CNTs were grown …


Advanced Ceramics And Composites Based On Rice Hulls, Peigen Zhang Jan 2012

Advanced Ceramics And Composites Based On Rice Hulls, Peigen Zhang

LSU Doctoral Dissertations

As a by-product of the agricultural industry, rice hulls are available at large volume across the world. The disposal of the rice hulls itself is a big problem for the rice millers where the rice paddies are peeled off and rice hulls are produced. There have been many disposal methods developed, but the true value of the rice hulls would be more appreciated when they are employed to produce high value-added advanced ceramics. In this dissertation, advanced ceramics, such as AlN nanowires, SiC whiskers, mullite and SiC/Al2O3 nano-sized composites, were developed and studied based on the rice hulls. The SiC …


Stability Problems In Constrained Pendulum Systems And Time-Delayed Systems, Prashanth Ramachandran Jan 2012

Stability Problems In Constrained Pendulum Systems And Time-Delayed Systems, Prashanth Ramachandran

LSU Doctoral Dissertations

In this dissertation, we study the boundary of stability of a class of linear mechanical systems as a function of a parameter. We consider two different systems under this class: a constrained double pendulum connected by a rigid rod and a state-feedback-controlled mechanical system with time delay. In the first system, the destabilizing parameter is the distance between the supports of the two pendulums. In the second system, the destabilizing parameter is the time delay. In the constrained double pendulum system, linear perturbation analysis is used to determine the natural frequency of the system. Our analysis reveals a zone of …


Bucky Gel Actuator For Morphing Applications, Ali Kadkhoda Ghamsari Jan 2012

Bucky Gel Actuator For Morphing Applications, Ali Kadkhoda Ghamsari

LSU Doctoral Dissertations

Since the demonstration of Bucky Gel Actuator (BGA) in 2005, a great deal of effort has been exerted to develop novel applications for electro-active morphing materials. Three-layered bimorph nanocomposite has become an excellent candidate for morphing applications since it can be easily fabricated, operated in air, and driven with few volts. There has been limited published study on the mechanical properties of BGA. In this study, the effect of three parameters: layer thickness, carbon nanotube type, and weight fraction of components, on the mechanical properties was investigated. Samples were characterized via nano-indentation and DMA. It was found that BGA composed …


Optimal Actuation In Active Vibration Control Using Pole-Placement, Carla Ann Guzzardo Jan 2012

Optimal Actuation In Active Vibration Control Using Pole-Placement, Carla Ann Guzzardo

LSU Doctoral Dissertations

The purpose of this study was to find and demonstrate a method of optimal actuation in a mechanical system to control its vibration response. The overall aim is to develop an active vibration control method with a minimum control effort, allowing the smallest actuators and lowest control input. Mechanical systems were approximated by discrete masses connected with springs and dampers. Both numerical and analytical methods were used to determine the optimum force selection vector, or input vector, to accomplish the pole placement, finding the optimal location of actuators and their relative gain so that the control effort is minimized. The …


Novel Surface Modifications And New Nanostructured Titania Synthesis For High-Performance Lithium-Ion Batteries And Solar Cells, Dongsheng Guan Jan 2012

Novel Surface Modifications And New Nanostructured Titania Synthesis For High-Performance Lithium-Ion Batteries And Solar Cells, Dongsheng Guan

LSU Doctoral Dissertations

With the rapid development of electronic devices, electrical vehicles and space aerocrafts, rechargeable lithium-ion batteries (LIBs) have attract numerous interests due to high energy and power density, long lifespan and low self discharge. Spinel LiMn2O4 is a promising cathode material for novel LIBs thanks to high working potential, easy synthesis and low cost, but its severe capacity drop mostly due to inevitable reactions with electrolytes is a drawback. In the dissertation, ultrathin and highly-conformal Al2O3 coatings are grown on the surface of micro-sized and nanosized LiMn2O4 with atomic layer deposition. Thickness of Al2O3 ALD coatings can be precisely controlled by …


Dynamic Characterization Of Vocal Fold Virbrations, Zhenyi Wei Jan 2012

Dynamic Characterization Of Vocal Fold Virbrations, Zhenyi Wei

LSU Doctoral Dissertations

An emerging trend among voice specialists is the use of quantitative protocols for the diagnosis and treatment of voice disorders. Vocal fold vibrations are directly related to voice quality. This research is devoted to providing an objective means of characterizing these vibrations. Our goal is to develop a dynamic model of vocal fold vibration, and map the parameter space of the model to a class of voice disorders; thus, furthering the assessment and diagnosis of voice disorder in clinical settings.

To this end, this dissertation introduces a new seven-mass biomechanical model for the vibration of vocal folds. The model is …


Multiscale Viscoplastic-Viscodamage Analysis Of Shape Memory Polymer Fibers With Application To Self Healing Smart Materials, Amir Shojaei Jan 2012

Multiscale Viscoplastic-Viscodamage Analysis Of Shape Memory Polymer Fibers With Application To Self Healing Smart Materials, Amir Shojaei

LSU Doctoral Dissertations

Self-healing smart material systems have been introduced into the research arena and they have already been deployed into industrial applications. The Close-Then-Heal (CTH) healing mechanism for polymeric self-healing systems is addressed herein and then a new generation of Shape Memory Polymer (SMP) based self-healing system is proposed in this work. This system incorporates SMP fibers to close the cracks while the embedded Thermoplastic Particles (TPs) are diffused into the crack surfaces upon heating and provide a molecular level of healing. The SMP fiber manufacturing procedure is briefly addressed in this work in which the bobbin of SMP fibers are heat …