Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Faculty Publications

Extended formation flight

Publication Year

Articles 1 - 5 of 5

Full-Text Articles in Mechanical Engineering

Extended Formation Flight At Transonic Speeds, Andrew Ning, Ilan Kroo, Michael Aftosmis, Marian Nemec, James Kless Sep 2014

Extended Formation Flight At Transonic Speeds, Andrew Ning, Ilan Kroo, Michael Aftosmis, Marian Nemec, James Kless

Faculty Publications

Aircraft flown in formation can realize significant reductions in induced drag by flying in regions of wake upwash. However, most transports fly at transonic speeds where the impact of compressibility on formation flight is not well understood. This study utilizes an Euler solver to analyze the inviscid aerodynamic forces and moments of transonic wing/body configurations flying in a two-aircraft formation. Formations with large streamwise separation distances (10-50 wingspans) are considered.

This work indicates that compressibility-related drag penalties in formation flight may be eliminated by slowing 2-3% below the nominal out-of-formation cruise Mach number (either at fixed lift coefficient or fixed …


Aircraft Route Optimization For Formation Flight, Jia Xu, Andrew Ning, Geoffrey Bower, Ilan Kroo Mar 2014

Aircraft Route Optimization For Formation Flight, Jia Xu, Andrew Ning, Geoffrey Bower, Ilan Kroo

Faculty Publications

We quantify the fuel and cost benefits of applying extended formation flight to com- mercial airline operations. Central to this study is the development of a bi-level, mixed integer-real formation flight optimization framework. The framework has two main components: 1) a continuous domain aircraft mission performance optimization and 2) an integer optimization component that selects the best combination of optimized missions to form a formation flight schedule. The mission performance reflects the effects of rolled-up wakes, formation heterogeneity, and formation-induced compressibility. The results show that an airline can use formation flight to reduce fuel burn by 5.8% or direct operating …


Inviscid Analysis Of Extended Formation Flight, James Kless, Michael Aftosmis, Andrew Ning, Marian Nemec Jul 2013

Inviscid Analysis Of Extended Formation Flight, James Kless, Michael Aftosmis, Andrew Ning, Marian Nemec

Faculty Publications

Flying airplanes in extended formations, with separation distances of tens of wingspans, significantly improves safety while maintaining most of the fuel savings achieved in close formations. The present study investigates the impact of roll trim and compressibility at a fixed lift coefficient on the benefits of extended formation flight. An Euler solver with adjoint-based mesh refinement combined with a wake propagation model is used to analyze a two-body echelon formation at a separation distance of 30 spans. Two geometries are examined: a simple wing and a wing-body geometry. Energy savings, quantified by both formation drag fraction and span efficiency factor, …


Compressibility Effects Of Extended Formation Flight, Andrew Ning, Ilan Kroo Jun 2011

Compressibility Effects Of Extended Formation Flight, Andrew Ning, Ilan Kroo

Faculty Publications

Aircraft flown in formations may realize significant reductions in induced drag by flying in regions of wake upwash. However, most transports fly at transonic speeds and compressibility effects in formation flight are not well understood. This study uses an Euler solver to analyze the inviscid aerodynamic forces and moments of transonic wing/body configurations flying in a 2-aircraft formation. We consider formations with large streamwise separation distances (10-50 wingspans) in an arrangement we term extended formation flight. Compressibility-related drag penalties in formation flight may be eliminated by slowing 2-3% below the nominal out-of-formation drag divergence Mach number, at fixed lift coefficient …


Aerodynamic Performance Of Extended Formation Flight, Andrew Ning, Tristan Flanzer, Ilan Kroo May 2011

Aerodynamic Performance Of Extended Formation Flight, Andrew Ning, Tristan Flanzer, Ilan Kroo

Faculty Publications

Close formation flight is of limited practicality for commercial aviation. Our concept of extended formation flight takes advantage of the persistence of cruise wakes by extending the streamwise spacing between aircraft in a formation. This allows the aircraft to fly at safe separation distances from each other, while still benefiting from the upwash of the upstream wake(s). In this paper we are interested in estimating the performance of these extended formations, and estimating some of the effects that limit the longitudinal extent of the formation. We consider the effects of wake rollup, vortex decay, vortex instabilities, vortex motion, and atmospheric …