Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 31

Full-Text Articles in Mechanical Engineering

Material State Awareness For Composites Part Ii: Precursor Damage Analysis And Quantification Of Degraded Material Properties Using Quantitative Ultrasonic Image Correlation (Quic), Subir Patra, Sourav Banerjee Dec 2017

Material State Awareness For Composites Part Ii: Precursor Damage Analysis And Quantification Of Degraded Material Properties Using Quantitative Ultrasonic Image Correlation (Quic), Subir Patra, Sourav Banerjee

Faculty Publications

Material state awareness of composites using conventional Nondestructive Evaluation (NDE) method is limited by finding the size and the locations of the cracks and the delamination in a composite structure. To aid the progressive failure models using the slow growth criteria, the awareness of the precursor damage state and quantification of the degraded material properties is necessary, which is challenging using the current NDE methods. To quantify the material state, a new offline NDE method is reported herein. The new method named Quantitative Ultrasonic Image Correlation (QUIC) is devised, where the concept of microcontinuum mechanics is hybrid with the experimentally …


Material State Awareness For Composites Part I: Precursor Damage Analysis Using Ultrasonic Guided Coda Wave Interferometry (Cwi), Subir Patra, Sourav Banerjee Dec 2017

Material State Awareness For Composites Part I: Precursor Damage Analysis Using Ultrasonic Guided Coda Wave Interferometry (Cwi), Subir Patra, Sourav Banerjee

Faculty Publications

Detection of precursor damage followed by the quantification of the degraded material properties could lead to more accurate progressive failure models for composite materials. However, such information is not readily available. In composite materials, the precursor damages—for example matrix cracking, microcracks, voids, interlaminar pre-delamination crack joining matrix cracks, fiber micro-buckling, local fiber breakage, local debonding, etc.—are insensitive to the low-frequency ultrasonic guided-wave-based online nondestructive evaluation (NDE) or Structural Health Monitoring (SHM) (~100–~500 kHz) systems. Overcoming this barrier, in this article, an online ultrasonic technique is proposed using the coda part of the guided wave signal, which is often neglected. Although …


Trading Off Sound Pressure Level And Average Power Production For Wind Farm Layout Optimization, Eric Tingey, Andrew Ning Dec 2017

Trading Off Sound Pressure Level And Average Power Production For Wind Farm Layout Optimization, Eric Tingey, Andrew Ning

Faculty Publications

This research explores the trade-offs between a wind farm’s average power production and noise impact on nearby observers. Two specific wind farm designs were studied and optimized using the FLORIS wake model and an acoustic model based on semi-empirical turbine noise calculations. It was found in the two wind farms that the average power production could be increased, up to 8.01% in one and 3.63% in the other, ignoring sound level considerations. Including a noise restriction in the optimization had a minimal impact on the optimal average power production within about a five-decibel range. Past this range, sound limitations decreased …


Reaching In Clutter With Whole-Arm Tactile Sensing, Advait Jain, Marc D. Killpack, Aaron Edsinger, Charles Kemp Nov 2017

Reaching In Clutter With Whole-Arm Tactile Sensing, Advait Jain, Marc D. Killpack, Aaron Edsinger, Charles Kemp

Faculty Publications

Clutter creates challenges for robot manipulation, including a lack of non-contact trajectories and reduced visibility for line-of-sight sensors. We demonstrate that robots can use whole-arm tactile sensing to perceive clutter and maneuver within it, while keeping contact forces low. We first present our approach to manipulation, which emphasizes the benefits of making contact across the entire manipulator and assumes the manipulator has low-stiffness actuation and tactile sensing across its entire surface. We then present a novel controller that exploits these assumptions. The controller only requires haptic sensing, handles multiple contacts, and does not need an explicit model of the environment …


The Aspergillus Flavus Homeobox Gene, Hbx1, Is Required For Development And Aflatoxin Production, Jeffrey W. Cary, Pamela Y. Harris-Coward, Leslie Scharfenstein, Brian M. Mack, Perng-Kuang Chang, Qijian Wei, Matthew Lebar, Carol Carter-Wientjes, Rajtilak Majumdar, Chandrani Mitra, Sourav Banerjee, Anindya Chanda Oct 2017

The Aspergillus Flavus Homeobox Gene, Hbx1, Is Required For Development And Aflatoxin Production, Jeffrey W. Cary, Pamela Y. Harris-Coward, Leslie Scharfenstein, Brian M. Mack, Perng-Kuang Chang, Qijian Wei, Matthew Lebar, Carol Carter-Wientjes, Rajtilak Majumdar, Chandrani Mitra, Sourav Banerjee, Anindya Chanda

Faculty Publications

Homeobox proteins, a class of well conserved transcription factors, regulate the expression of targeted genes, especially those involved in development. In filamentous fungi, homeobox genes are required for normal conidiogenesis and fruiting body formation. In the present study, we identified eight homeobox (hbx) genes in the aflatoxin-producing ascomycete, Aspergillus flavus, and determined their respective role in growth, conidiation and sclerotial production. Disruption of seven of the eight genes had little to no effect on fungal growth and development. However, disruption of the homeobox gene AFLA_069100, designated as hbx1, in two morphologically different A. flavus strains, CA14 and AF70, resulted in …


Deep Visual Gravity Vector Detection For Unmanned Aircraft Attitude Estimation, Gary J. Ellingson, David Wingate, Tim Mclain Sep 2017

Deep Visual Gravity Vector Detection For Unmanned Aircraft Attitude Estimation, Gary J. Ellingson, David Wingate, Tim Mclain

Faculty Publications

This paper demonstrates a feasible method for using a deep neural network as a sensor to estimate the attitude of a flying vehicle using only flight video. A dataset of still images and associated gravity vectors was collected and used to perform supervised learning. The network builds on a previously trained network and was trained to be able to approximate the attitude of the camera with an average error of about 8 degrees. Flight test video was recorded and processed with a relatively simple visual odometry method. The aircraft attitude is then estimated with the visual odometry as the state …


Relative Multiplicative Extended Kalman Filter For Observable Gps-Denied Navigation, Daniel P. Koch, David O. Wheeler, Randal Beard, Tim Mclain, Kevin M. Brink Aug 2017

Relative Multiplicative Extended Kalman Filter For Observable Gps-Denied Navigation, Daniel P. Koch, David O. Wheeler, Randal Beard, Tim Mclain, Kevin M. Brink

Faculty Publications

This work presents a multiplicative extended Kalman filter for estimating the relative state of a multirotor vehicle operating in a GPS-denied environment. The filter fuses data from an inertial measurement unit and altimeter with relative-pose updates from a keyframe-based visual odometry or laser scan-matching algorithm. Because the global position and heading states of the vehicle are unobservable in the absence of global measurements such as GPS, the filter in this paper estimates the state with respect to a local frame that is colocated with the odometry keyframe. As a result, the odometry update provides nearly-direct measurements of the relative vehicle …


Multiphysics Simulation Of Low-Amplitude Acoustic Wave Detection By Piezoelectric Wafer Active Sensors Validated By In-Situ Ae-Fatigue Experiment, Yeasin Bhuiyan, Victor Giurgiutiu Aug 2017

Multiphysics Simulation Of Low-Amplitude Acoustic Wave Detection By Piezoelectric Wafer Active Sensors Validated By In-Situ Ae-Fatigue Experiment, Yeasin Bhuiyan, Victor Giurgiutiu

Faculty Publications

Piezoelectric wafer active sensors (PWAS) are commonly used for detecting Lamb waves for structural health monitoring application. However, in most applications of active sensing, the signals are of high-amplitude and easy to detect. In this article, we have shown a new avenue of using the PWAS transducer for detecting the low-amplitude fatigue-crack related acoustic emission (AE) signals. Multiphysics finite element (FE) simulations were performed with two PWAS transducers bonded to the structure. Various configurations of the sensors were studied by using the simulations. One PWAS was placed near to the fatigue-crack and the other one was placed at a certain …


Proton Transfer In Molten Lithium Carbonate: Mechanism And Kinetics By Density Functional Theory Calculations, Xueling Lei, Kevin Huang, Changyong Qin Aug 2017

Proton Transfer In Molten Lithium Carbonate: Mechanism And Kinetics By Density Functional Theory Calculations, Xueling Lei, Kevin Huang, Changyong Qin

Faculty Publications

Using static and dynamic density functional theory (DFT) methods with a cluster model of [(Li2CO3)8H]+, the mechanism and kinetics of proton transfer in lithium molten carbonate (MC) were investigated. The migration of proton prefers an inter-carbonate pathway with an energy barrier of 8.0 kcal/mol at the B3LYP/6-31 G(d,p) level, which is in good agreement with the value of 7.6 kcal/mol and 7.5 kcal/mol from experiment and FPMD simulation, respectively. At transition state (TS), a linkage of O–H–O involving O 2p and H 1 s orbitals is formed between two carbonate ions. The calculated trajectory of H indicates that proton has …


Static And Dynamic Strain Monitoring Of Reinforced Concrete Components Through Embedded Carbon Nanotube Cement-Based Sensors, Antonella D’Alessandro, Filippo Ubertini, Enrique García-Macías, Rafael Castro-Triguero, Austin Downey, Simon Laflamme, Andrea Meoni, Annibale Luigi Materazzi Aug 2017

Static And Dynamic Strain Monitoring Of Reinforced Concrete Components Through Embedded Carbon Nanotube Cement-Based Sensors, Antonella D’Alessandro, Filippo Ubertini, Enrique García-Macías, Rafael Castro-Triguero, Austin Downey, Simon Laflamme, Andrea Meoni, Annibale Luigi Materazzi

Faculty Publications

The paper presents a study on the use of cement-based sensors doped with carbon nanotubes as embedded smart sensors for static and dynamic strain monitoring of reinforced concrete (RC) elements. Such novel sensors can be used for the monitoring of civil infrastructures. Because they are fabricated from a structural material and are easy to utilize, these sensors can be integrated into structural elements for monitoring of different types of constructions during their service life. Despite the scientific attention that such sensors have received in recent years, further research is needed to understand (i) the repeatability and accuracy of sensors’ behavior …


Improving The Floris Wind Plant Model For Compatibility With Gradient-Based Optimization, Jared Thomas, Pieter Gebraad, Andrew Ning Aug 2017

Improving The Floris Wind Plant Model For Compatibility With Gradient-Based Optimization, Jared Thomas, Pieter Gebraad, Andrew Ning

Faculty Publications

The FLOw Redirection and Induction in Steady-state (FLORIS) model, a parametric wind turbine wake model that predicts steady state wake characteristics based on wind turbine position and yaw angle, was developed for optimization of control settings and turbine locations. This paper provides details on the recent changes made to the FLORIS model to make the model more suitable for gradient-based optimization. Changes to the FLORIS model were made to remove discontinuities and add curvature to regions of non-physical zero gradient. Exact gradients for the FLORIS model were obtained using algorithmic differentiation. A set of three case studies demonstrate that using …


Minimum Required Detection Range For Detect And Avoid Of Unmanned Aircraft Systems, Jared Kevin Wikle, Tim Mclain, Randal W. Beard, Laith Rasmi Sahawneh Jun 2017

Minimum Required Detection Range For Detect And Avoid Of Unmanned Aircraft Systems, Jared Kevin Wikle, Tim Mclain, Randal W. Beard, Laith Rasmi Sahawneh

Faculty Publications

For unmanned aircraft systems to gain full access to the National Airspace System, they must have the capability to detect and avoid other aircraft. To safely avoid an- other aircraft, an unmanned aircraft must detect the intruder aircraft with ample time and distance to allow the ownship to track the intruder, perform risk assessment, plan an avoidance path, and execute the maneuver. This paper describes two analytical methods for finding the minimum detection range to ensure that these detection and avoidance steps can be carried out. The first method, time-based geometric velocity vectors, includes the bank-angle dynamics of the ownship; …


Thermophysical Properties Of Thin Fibers Via Photothermal Quantum Dot Fluorescence Spectral Shape-Based Thermometry, Troy Munro, Liwang Liu, Heng Ban, Christ Glorieux Jun 2017

Thermophysical Properties Of Thin Fibers Via Photothermal Quantum Dot Fluorescence Spectral Shape-Based Thermometry, Troy Munro, Liwang Liu, Heng Ban, Christ Glorieux

Faculty Publications

To improve predictions of composite behavior under thermal loads, there is a need to measure the axial thermophysical properties of thin fibers. Current methods to accomplish this have prohibitively long lead times due to extensive sample preparation. This work details the use of quantum dots thermomarkers to measure the surface temperature of thin fibers in a non-contact manner and determine the fibers’ thermal diffusivity. Neural networks are trained on extracting the temperature of a sample from fluorescence spectra in calibrated, steady-state conditions, based on different spectral features such as peak intensity and peak wavelength. The trained neural networks are then …


Estimating Human Intent For Physical Human-Robot Co-Manipulation, Eric Townsend, Erich Mielke, David Wingate, Marc D. Killpack May 2017

Estimating Human Intent For Physical Human-Robot Co-Manipulation, Eric Townsend, Erich Mielke, David Wingate, Marc D. Killpack

Faculty Publications

Human teams can be exceptionally efficient at adapting and collaborating during manipulation tasks using shared mental models. However, the same shared mental models that can be used by humans to perform robust low-level force and motion control during collaborative manipulation tasks are non-existent for robots. For robots to perform collaborative tasks with people naturally and efficiently, understanding and predicting human intent is necessary. However, humans are difficult to predict and model. We have completed an exploratory study recording motion and force for 20 human dyads moving an object in tandem in order to better understand how they move and how …


Microstructure Correlation With Formability For Biaxial Stretching Of Magnesium Alloy Az31b At Mildly Elevated Temperatures, David T. Fullwood, Isaac Chelladurai, Michael P. Miles, John E. Carsley, Raj K. Mishra, Irene J. Beyerlein, Marko Knezevic May 2017

Microstructure Correlation With Formability For Biaxial Stretching Of Magnesium Alloy Az31b At Mildly Elevated Temperatures, David T. Fullwood, Isaac Chelladurai, Michael P. Miles, John E. Carsley, Raj K. Mishra, Irene J. Beyerlein, Marko Knezevic

Faculty Publications

Magnesium AZ31B sheets of 2 mm thickness were stretch formed using a 101.6 mm diameter punch at temperatures from 25°C - 150°C, in 25°C increments. Surface strains were measured using a digital image correlation (DIC) method. The punch height vs load curve was found to be the same for temperatures of 25°C and for 50°C, while at 75°C and above the load for a given punch height started to decrease, indicating a potential change in deformation mechanism. Electron Backscatter Diffraction (EBSD) was used to quantify features of the microstructure in the tested specimens. In particular, the gradual decrease in twinning …


Surface Acoustic Wave Based Pumping In A Microchannel, Tao Wang, Qi Ni, Nathan B. Crane, Rasim Guldiken May 2017

Surface Acoustic Wave Based Pumping In A Microchannel, Tao Wang, Qi Ni, Nathan B. Crane, Rasim Guldiken

Faculty Publications

Pumping and manipulation of liquids in microfluidic channels is important for many mechanical, chemical and biomedical applications. Surface acoustic wave based devices fabricated on high-efficiency piezoelectric substrates have been recently investigated for mixing and separation application within microfluidic channels. In this paper, we introduce a novel integrated surface acoustic wave based pump for liquid delivery and precise manipulation within a microchannel. The device employs a hydrophobic surface coating (Cytop) in the device design for decreasing the friction force and increasing the bonding. Contrary to previous surface acoustic wave based pump, this device does not need precise layers of water and …


Optimization Under Uncertainty For Wake Steering Strategies, Julian Quick, Jennifer Annoni, Ryan King, Katherine Dykes, Paul Fleming, Andrew Ning May 2017

Optimization Under Uncertainty For Wake Steering Strategies, Julian Quick, Jennifer Annoni, Ryan King, Katherine Dykes, Paul Fleming, Andrew Ning

Faculty Publications

Wind turbines in a wind power plant experience significant power losses because of aerodynamic interactions between turbines. One control strategy to reduce these losses is known as 'wake steering,' in which upstream turbines are yawed to direct wakes away from downstream turbines. Previous wake steering research has assumed perfect information, however, there can be significant uncertainty in many aspects of the problem, including wind inflow and various turbine measurements. Uncertainty has significant implications for performance of wake steering strategies. Consequently, the authors formulate and solve an optimization under uncertainty (OUU) problem for finding optimal wake steering strategies in the presence …


Thermal Characterization Of Natural And Synthetic Spider Silks By Both The 3Ω And Transient Electrothermal Methods, Troy Munro, Changhu Xing, Heng Ban, Cameron G. Copeland, Randolph V. Lewis, Colby Jensen Apr 2017

Thermal Characterization Of Natural And Synthetic Spider Silks By Both The 3Ω And Transient Electrothermal Methods, Troy Munro, Changhu Xing, Heng Ban, Cameron G. Copeland, Randolph V. Lewis, Colby Jensen

Faculty Publications

Thermal conductivity, thermal diffusivity and volumetric heat capacity of three spider silks are measured in this paper as a benchmark for further studies. These silks include the major and minor ampullate silks of the Nephila clavipes spider, and a synthetic spider silk fiber made from recombinant dragline silk proteins purified from transgenic goats’ milk. Two complementary measurement techniques are employed in the thermal characterization of these microscale single fibers for self-verification. One is the transient electrothermal technique (TET) and the other is the 3ω method. Experimental measurements indicate that thermal properties of the dragline silk are very close to those …


Investigation Of Synthetic Spider Silk Crystallinity And Alignment Via Electrothermal, Pyroelectric, Literature Xrd, And Tensile Techniques, Troy Munro, Tristan Putzeys, Michael Wubbenhorst, Christ Glorieux, Cameron G. Copeland, Randolph V. Lewis, Changhu Xing, Heng Ban Apr 2017

Investigation Of Synthetic Spider Silk Crystallinity And Alignment Via Electrothermal, Pyroelectric, Literature Xrd, And Tensile Techniques, Troy Munro, Tristan Putzeys, Michael Wubbenhorst, Christ Glorieux, Cameron G. Copeland, Randolph V. Lewis, Changhu Xing, Heng Ban

Faculty Publications

The processes used to create synthetic spider silk greatly affect the properties of the produced fibers. This paper investigates the effect of process variations during artificial spinning on the thermal and mechanical properties of the produced silk. Property values are also compared to the ones of the natural dragline silk of the N. clavipes spider, and to unprocessed (as-spun) synthetic silk. Structural characterization by scanning pyroelectric microscopy is employed to provide insight into the axial orientation of the crystalline regions of the fiber and is supported by XRD data. The results show that stretching and passage through liquid baths induce …


Two-Phase Flow Pressure Drop In Superhydrophobic Channels, Kimberly A. Stevens, Julie Crockett, Daniel R. Maynes, Brian D. Iverson Mar 2017

Two-Phase Flow Pressure Drop In Superhydrophobic Channels, Kimberly A. Stevens, Julie Crockett, Daniel R. Maynes, Brian D. Iverson

Faculty Publications

Superhydrophobic surfaces have been shown to reduce drag in single-phase channel flow; however, little work has been done to characterize their drag-reducing ability found in two-phase flows. Adiabatic, airwater mixtures were used to explore the influence of hydrophobicity on two-phase flows and the hydrodynamics which might be present in flow condensation environments. Pressure drop measurements in a rectangular channel with one superhydrophobic wall (cross-section approximately 0.37 x 10 mm) and three transparent hydrophilic walls were obtained. Data for air/water mixtures with superficial Reynolds numbers ranging from 22–215 and 55–220, respectively, were obtained for superhydrophobic surfaces with three different cavity fractions. …


Influence Of Noise Generating Factors On Cross Correlation Ebsd Measurement Of Gnds, David T. Fullwood, Landon Hansen, Brian Jackson, Stewart I. Wright, Marc De Graef, Eric Richards Homer, Robert Wagoner Mar 2017

Influence Of Noise Generating Factors On Cross Correlation Ebsd Measurement Of Gnds, David T. Fullwood, Landon Hansen, Brian Jackson, Stewart I. Wright, Marc De Graef, Eric Richards Homer, Robert Wagoner

Faculty Publications

Studies of dislocation density evolution are fundamental to improved understanding in various areas of deformation mechanics. Recent advances in cross-correlation techniques, applied to EBSD data have particularly shed light on geometrically necessary dislocation (GND) behavior. However, the framework is relatively computationally expensive – patterns are typically saved from the EBSD scan and analyzed offline. A better understanding of the impact of EBSD pattern degradation, such as binning, compression, and various forms of noise, is vital to enable optimization of rapid and low cost GND analysis. This paper tackles the problem by setting up a set of simulated patterns that mimic …


Binder-Jet Printing Of Fine Stainless Steel Powder With Varied Final Density, Mohsen Ziaee, Eric M. Tridas, Nathan B. Crane Mar 2017

Binder-Jet Printing Of Fine Stainless Steel Powder With Varied Final Density, Mohsen Ziaee, Eric M. Tridas, Nathan B. Crane

Faculty Publications

Binder jetting is an additive manufacturing process that produces relatively weak porous parts that are strengthened through sintering and/or infiltration. This paper reports on two different methods of preparing fine 316 stainless steel powder and their impact on the final sintered density and dimensions relative to direct printing into -22 micron powder. The first method uses agglomerates of fine powder. In the second, nylon 12 powders are mixed with the steel powder as a fugitive space holder to increase porosity. Sintered density and sintering shrinkage of agglomerate material are shown to vary with the density of the spread powder bed. …


Analysis Of Rigid Extended Object Co-Manipulation By Human Dyads: Lateral Movement Characterization, Erich Mielke, Eric Townsend, Marc D. Killpack Feb 2017

Analysis Of Rigid Extended Object Co-Manipulation By Human Dyads: Lateral Movement Characterization, Erich Mielke, Eric Townsend, Marc D. Killpack

Faculty Publications

During co-manipulation involving humans and robots, it is necessary to base robot controllers on human behaviors to achieve comfortable and coordinated movement between the human-robot dyad. In this paper, we describe an experiment between human-human dyads and we record the force and motion data as the leader-follower dyads moved in translation and rotation. The force/motion data was then analyzed for patterns found during lateral translation only. For extended objects, lateral translation and in-place rotation are ambiguous, but this paper determines a way to characterize lateral translation triggers for future use in human-robot interaction. The study has 4 main results. First, …


A Well Clear Recommendation For Small Uas In High-Density, Ads-B-Enabled Airspace, Timothy Mclain, Matthew O. Duffield Jan 2017

A Well Clear Recommendation For Small Uas In High-Density, Ads-B-Enabled Airspace, Timothy Mclain, Matthew O. Duffield

Faculty Publications

With the growing popularity of small unmanned aircraft systems (UAS), there is a significant need to enable small UAS to detect and avoid collisions with both manned and unmanned aircraft. The capabilities of ADS-B make it an attractive sensor for detect and avoid (DAA), but it is susceptible to frequency congestion. This paper quantitatively analyzes the frequency limitations of 978 MHz ADS-B. It then uses these limitations to make a recommendation for well clear in ADS-B-equipped airspace that has a high density of small UAS operations.


Hybrid Concentrated Solar Thermal Power Systems: A Review, Kody M. Powell, Khalid Rashid, Kevin Ellingwood, Jake Tuttle, Brian D. Iverson Jan 2017

Hybrid Concentrated Solar Thermal Power Systems: A Review, Kody M. Powell, Khalid Rashid, Kevin Ellingwood, Jake Tuttle, Brian D. Iverson

Faculty Publications

Concentrated solar power (CSP), or solar thermal power, is an ideal technology to hybridize with other energy technologies for power generation. CSP shares technology with conventional power generation and can be readily integrated with other energy types into a synergistic system, which has many potential benefits including increased dispatchability and reliability, improved efficiency, reduced capital costs through equipment sharing, and the opportunity for flexible operation by alternating between energy sources. Another advantage of CSP technology is the ability to readily store via thermal energy storage (TES), making the intermittent solar resource dispatchable. A review of CSP hybridization strategies with coal, …


Controlled Manipulation Of Floating Objects On Deformed Fluid Interfaces And Conditions For Stable Equilibria, Jose M. Carballo, Qi Ni, Jose Vasquez, Nathan B. Crane Jan 2017

Controlled Manipulation Of Floating Objects On Deformed Fluid Interfaces And Conditions For Stable Equilibria, Jose M. Carballo, Qi Ni, Jose Vasquez, Nathan B. Crane

Faculty Publications

At the millimeter scale, interactions between floating and semi-immersed objects are significant. The local curvature of the interface is modified by the weight/buoyancy forces of floating objects, and by the surface properties of semi-immersed objects. The curvature changes generate attractive (or repulsive) interactions between floating parts, and semi-immersed objects. This work demonstrates how electrowetting can manipulate these interactions in order to position, align, assemble and transport parts attached to the fluid interface. This demonstrates one way in which fluid interfaces can provide an alternative to standard pick and place technology for part positioning/assembly. Typically, the part/rod forces are purely attractive …


Fundamental Principles Of Tremor Propagation In The Upper Limb, Andrew D. Davidson, Steven Knight Charles Jan 2017

Fundamental Principles Of Tremor Propagation In The Upper Limb, Andrew D. Davidson, Steven Knight Charles

Faculty Publications

Although tremor is the most common movement disorder, there exist few effective tremor-suppressing devices, in part because the characteristics of tremor throughout the upper limb are unknown. To clarify, optimally suppressing tremor requires a knowledge of the mechanical origin, propagation, and distribution of tremor throughout the upper limb. Here we present the first systematic investigation of how tremor propagates between the shoulder, elbow, forearm, and wrist. We simulated tremor propagation using a linear, time-invariant, lumped-parameter model relating joint torques and the resulting joint displacements. The model focused on the seven main degrees of freedom from the shoulder to the wrist …


Extending The Upper Temperature Range Of Microchip Gas Chromatography Using A Heater/Clamp Assembly, Abhijit Ghosh, Jacob E. Johnson, Johnathan G. Nuss, Brittany A. Stark, Aaron R. Hawkins, Luke T. Tolley, Brian D. Iverson, H. Dennis Tolley, Milton L. Lee Jan 2017

Extending The Upper Temperature Range Of Microchip Gas Chromatography Using A Heater/Clamp Assembly, Abhijit Ghosh, Jacob E. Johnson, Johnathan G. Nuss, Brittany A. Stark, Aaron R. Hawkins, Luke T. Tolley, Brian D. Iverson, H. Dennis Tolley, Milton L. Lee

Faculty Publications

Miniaturization of gas chromatography (GC) instrumentation is of interest because it addresses current and future issues relating to compactness, portability and field application. While incremental advancements continue to be reported in microchip GC, the current performance is far from acceptable. This lower performance compared to conventional GC is due to factors such as pooling of the stationary phase in corners of non-cylindrical channels, adsorption of sensitive compounds on incompletely deactivated surfaces, shorter column lengths and less than optimum interfacing to injector and detector. In this work, a microchip GC system was developed that solves the latter challenge, i.e. microchip interfacing …


Improving Sensitivity Of Electrochemical Sensors With Convective Transport In Free-Standing, Carbon Nanotube Structures, Benjamin J. Brownlee, Kevin M. Marr, Jonathan C. Claussen, Brian D. Iverson Jan 2017

Improving Sensitivity Of Electrochemical Sensors With Convective Transport In Free-Standing, Carbon Nanotube Structures, Benjamin J. Brownlee, Kevin M. Marr, Jonathan C. Claussen, Brian D. Iverson

Faculty Publications

High-aspect-ratio, porous membrane of vertically-aligned carbon nanotubes (CNTs) were developed through a templated microfabrication approach for electrochemical sensing. Nanostructured platinum (Pt) catalyst was deposited onto the CNTs with a facile, electroless deposition method, resulting in a Pt-nanowire-coated, CNT sensor (PN-CNT). Convection mass transfer enhancement was shown to improve PN-CNT sensor performance in the non-enzymatic, amperometric sensing of hydrogen peroxide (H2O2). In particular, convective enhancement was achieved through the use of high surface area to fluid volume structures and concentration boundary layer confinement in a channel. Stir speed and sensor orientation especially influenced the measured current in …


Gradient-Based Optimization Of Wind Farms With Different Turbine Heights, Andrew P.J. Stanley, Jared Thomas, Andrew Ning, Jennifer Annoni, Katherine Dykes, Paul Fleming Jan 2017

Gradient-Based Optimization Of Wind Farms With Different Turbine Heights, Andrew P.J. Stanley, Jared Thomas, Andrew Ning, Jennifer Annoni, Katherine Dykes, Paul Fleming

Faculty Publications

Turbine wakes reduce power production in a wind farm. Current wind farms are gen- erally built with turbines that are all the same height, but if wind farms included turbines with different tower heights, the cost of energy (COE) may be reduced. We used gradient-based optimization to demonstrate a method to optimize wind farms with varied hub heights. Our study includes a modified version of the FLORIS wake model that accommodates three-dimensional wakes integrated with a tower structural model. Our purpose was to design a process to minimize the COE of a wind farm through layout optimization and varying turbine …