Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 24 of 24

Full-Text Articles in Mechanical Engineering

Evaluating Eeg–Emg Fusion-Based Classification As A Method For Improving Control Of Wearable Robotic Devices For Upper-Limb Rehabilitation, Jacob G. Tryon Aug 2023

Evaluating Eeg–Emg Fusion-Based Classification As A Method For Improving Control Of Wearable Robotic Devices For Upper-Limb Rehabilitation, Jacob G. Tryon

Electronic Thesis and Dissertation Repository

Musculoskeletal disorders are the biggest cause of disability worldwide, and wearable mechatronic rehabilitation devices have been proposed for treatment. However, before widespread adoption, improvements in user control and system adaptability are required. User intention should be detected intuitively, and user-induced changes in system dynamics should be unobtrusively identified and corrected. Developments often focus on model-dependent nonlinear control theory, which is challenging to implement for wearable devices.

One alternative is to incorporate bioelectrical signal-based machine learning into the system, allowing for simpler controller designs to be augmented by supplemental brain (electroencephalography/EEG) and muscle (electromyography/EMG) information. To extract user intention better, sensor …


Data And Sensor Fusion Using Fmg, Semg And Imu Sensors For Upper Limb Prosthesis Control, Jason S. Gharibo Aug 2021

Data And Sensor Fusion Using Fmg, Semg And Imu Sensors For Upper Limb Prosthesis Control, Jason S. Gharibo

Electronic Thesis and Dissertation Repository

Whether someone is born with a missing limb or an amputation occurs later in life, living with this disability can be extremely challenging. The robotic prosthetic devices available today are capable of giving users more functionality, but the methods available to control these prostheses restrict their use to simple actions, and are part of the reason why users often reject prosthetic technologies. Using multiple myography modalities has been a promising approach to address these control limitations; however, only two myography modalities have been rigorously tested so far, and while the results have shown improvements, they have not been robust enough …


Development Of A Wireless Telemetry Load And Displacement Sensor For Orthopaedic Applications, William Anderson Jul 2021

Development Of A Wireless Telemetry Load And Displacement Sensor For Orthopaedic Applications, William Anderson

Electronic Thesis and Dissertation Repository

Due to sensor size and supporting circuitry, in vivo load and deformation measurements are currently restricted to applications within larger orthopaedic implants. The objective of this thesis is to repurpose a commercially available low-power, miniature, wireless, telemetric, tire-pressure sensor (FXTH87) to measure load and deformation for future use in biomechanical applications. The capacitive transducer membrane of the FXTH87 was modified, and a relationship was reported between applied compressive deformation and sensor signal value. The sensor package was embedded within a deformable enclosure to illustrate potential applications of the sensor for monitoring load. Finite element analysis was an effective tool to …


Development Of A Wearable Haptic Feedback Device For Upper Limb Prosthetics Through Sensory Substitution, Marco B.S. Gallone May 2021

Development Of A Wearable Haptic Feedback Device For Upper Limb Prosthetics Through Sensory Substitution, Marco B.S. Gallone

Electronic Thesis and Dissertation Repository

Haptics can enable a direct communication pipeline between the artificial limb and the brain; adding haptic sensory feedback for prosthesis wearers is believed to improve operation without drawing too much of the user's attention. Through neuroplasticity, the brain can become more cognizant of the information delivered through the skin and may eventually interpret it as inherently as other natural senses. In this thesis, a wearable haptic feedback device (WHFD) is developed to communicate prosthesis sensory information. A 14-week, 6-stage, between subjects study was created to investigate the learning trajectory as participants were stimulated with haptic patterns conveying joint proprioception. 37 …


Design, Development, And Evaluation Of Customized Electronics For Controlling A 5-Dof Magneto-Rheological Actuator Collaborative Robot, Ziqi Yang Jan 2021

Design, Development, And Evaluation Of Customized Electronics For Controlling A 5-Dof Magneto-Rheological Actuator Collaborative Robot, Ziqi Yang

Electronic Thesis and Dissertation Repository

In recent years, Magneto-Rheological (MR) fluids has been used in various fields such as robotics, automotive, aerospace, etc. The most common use of the MR fluids is within a clutch-like mechanism, namely an MR clutch. When mechanical input is coupled to the input part of the MR clutch, the MR clutch provides a means of delivering this mechanical input to its output, through the MR fluids. The combination of the mechanical input device and the MR clutch is called an MR actuator. The MR actuator features inherently compliance owing to the characteristic of the MR fluids while also offering higher …


Effect Of The Nonlinear Material Viscosity On The Performance Of Dielectric Elastomer Transducers, Yuanping Li Jun 2019

Effect Of The Nonlinear Material Viscosity On The Performance Of Dielectric Elastomer Transducers, Yuanping Li

Electronic Thesis and Dissertation Repository

As a typical type of soft electroactive materials, dielectric elastomers (DEs) are capable of producing large voltage-induced deformation, which makes them desirable materials for a variety of applications in transduction technology, including tunable oscillators, resonators, biomimetics and energy harvesters. The dynamic and energy harvesting performance of such DE-based devices is strongly affected not only by multiple failure modes such as electrical breakdown, electromechanical instability, loss-of-tension and fatigue, but also by their material viscoelasticity. Moreover, as suggested by experiments and theoretical studies, DEs possess nonlinear relaxation processes, which makes modeling of the performance of DE-based devices more challenging.

In this thesis, …


Bouncing Dynamics Of A Class Of Mem/Nem Switching Systems, Mohamed Bognash Jan 2019

Bouncing Dynamics Of A Class Of Mem/Nem Switching Systems, Mohamed Bognash

Electronic Thesis and Dissertation Repository

The aim of the present research is to understand the bouncing dynamic behavior of NEM/MEM switches in order to improve the switch performance and reliability. It is well known that the bouncing can dramatically degrade the switch performance and life; hence, in the present study, bouncing dynamics of a cantilever-based NME/MEM switch has been studied in detail. To this end, a model of a MEM switch that incorporates electrostatic force, squeeze film air damping force as well as asperity-based contact force has been proposed for an electrostatically actuated switch. An actuation force due to piezoelectric effects is further included in …


Fabrication Of 3d Conjugated Polymer Structures Via Vat Polymerization Additive Manufacturing, Andrew T. Cullen Apr 2018

Fabrication Of 3d Conjugated Polymer Structures Via Vat Polymerization Additive Manufacturing, Andrew T. Cullen

Electronic Thesis and Dissertation Repository

Conjugated polymers are a class of electromechanically active materials that can produce motion in response to an electric potential. This motion can be harnessed to perform mechanical work, and therefore these materials are particularly well suited for use as sensors and actuators in microelectromechanical systems. Conventional methods to fabricate conjugated polymer actuators result in planar morphologies that limit fabricated devices to simplistic linear or bending actuation modes. To overcome this limitation, this work develops a conjugated polymer formulation and associated additive manufacturing method capable of realizing three-dimensional conductive polymer structures. A light-based additive manufacturing technique known as vat polymerization is …


Additive Manufacturing Process Of 3d Polyaniline Transducers Via Direct Ink Writing, Frederick Benjamin Holness Aug 2017

Additive Manufacturing Process Of 3d Polyaniline Transducers Via Direct Ink Writing, Frederick Benjamin Holness

Electronic Thesis and Dissertation Repository

Electroactive polymers exhibit a change in properties, typically size or shape, in response to electrical stimuli. One class of electroactive polymer of particular interest are the conjugated polymers, whose conjugated backbone structure imparts electrical conductivity. However, this structure imposes processing limitations restricting their form to 2D structures. To overcome this, we develop specially formulated polyaniline- based blends via counter-ion induced thermal doping for the fabrication of 3D conductive structures via direct ink writing. This approach employs multi-material extrusion for the production of structures with passive and active features, rapid device fabrication, and improved design freedom. A model of the thermal …


Hybrid Magneto-Rheological Actuators For Human Friendly Robotic Manipulators, Masoud Moghani Jul 2016

Hybrid Magneto-Rheological Actuators For Human Friendly Robotic Manipulators, Masoud Moghani

Electronic Thesis and Dissertation Repository

In recent years, many developments in the field of the physical human robot interaction (pHRI) have been witnessed and significant attentions have been given to the subject of safety within the interactive environments. Ensuring the safety has led to the design of the robots that are physically unable to hurt humans. However, Such systems commonly suffer from the safety-performance trade-off. Magneto-Rheological (MR) fluids are a special class of fluids that exhibit variable yield stress with respect to an applied magnetic field. Devices developed with such fluids are known to provide the prerequisite requirements of intrinsic safe actuation while maintaining the …


Development Of An Autonomous Robotic Mushroom Harvester, Nikita Alexeevich Kuchinskiy Feb 2016

Development Of An Autonomous Robotic Mushroom Harvester, Nikita Alexeevich Kuchinskiy

Electronic Thesis and Dissertation Repository

The process of development of a new robot is one of the modern technological arts. This process involves multiple complex steps and recursive approach. In this project, a solution for automatic harvesting of mushrooms is developed. In order to design an effective solution, it is necessary to explore and take into consideration the limitations of grasping very soft and fragile objects (particularly mushrooms). We will elaborate several strategies of picking and analyze each strategy to formulate the design requirements, develop a solution, and finally, evaluate the efficiency of the proposed solution in actual farm conditions for real mushrooms. The mushroom …


Towards The Development Of A Wearable Tremor Suppression Glove, Yue Zhou Dec 2015

Towards The Development Of A Wearable Tremor Suppression Glove, Yue Zhou

Electronic Thesis and Dissertation Repository

Patients diagnosed with Parkinson’s disease (PD) often associate with tremor. Among other symptoms of PD, tremor is the most aggressive symptom and it is difficult to control with traditional treatments. This thesis presents the assessment of Parkinsonian hand tremor in both the time domain and the frequency domain, the performance of a tremor estimator using different tremor models, and the development of a novel mechatronic transmission system for a wearable tremor suppression device. This transmission system functions as a mechatronic splitter that allows a single power source to support multiple independent applications. Unique features of this transmission system include low …


Electromechanical Coupling Behavior Of Dielectric Elastomer Transducers, Jianyou Zhou Sep 2015

Electromechanical Coupling Behavior Of Dielectric Elastomer Transducers, Jianyou Zhou

Electronic Thesis and Dissertation Repository

Dielectric elastomer transducers with large deformation, high energy output, light weight and low cost have been drawing great interest from both the research and industry communities, and shown potential for versatile applications in biomimetics, dynamics, robotics and energy harvesting. However, in addition to multiple failure modes such as electrical breakdown, electromechanical instability, loss-of-tension and fatigue, the performance of dielectric elastomer transducers are also strongly influenced by the hyperelastic and viscoelastic properties of the material. Also, the interplay among these material properties and the failure modes is rather difficult to predict. Therefore, in order to provide guidelines for the optimal design …


Stochastic Stability And Uncertainty Quantification Of Ring-Based Vibratory Gyroscopes, Soroush Arghavan Aug 2015

Stochastic Stability And Uncertainty Quantification Of Ring-Based Vibratory Gyroscopes, Soroush Arghavan

Electronic Thesis and Dissertation Repository

Effect of stochastic fluctuations in angular velocity on the stability of two DOF ring-type MEMS gyroscopes is investigated. The governing Stochastic Differential Equations are discretized using the higher-order Milstein scheme in order to numerically predict the system response assuming the fluctuations to be white noise. Simulations via Euler scheme as well as a measure of Largest Lyapunov Exponents are employed for validation purposes due to lack of similar analytical or experimental data. The stability investigation predicts that the threshold fluctuation intensity increases nonlinearly with damping ratio. Under typical gyroscope operating conditions, nominal input angular velocity magnitude and mass mismatch appear …


On The Application Of Mechanical Vibration In Robotics-Assisted Soft Tissue Intervention, Iman Khalaji Dec 2014

On The Application Of Mechanical Vibration In Robotics-Assisted Soft Tissue Intervention, Iman Khalaji

Electronic Thesis and Dissertation Repository

Mechanical vibration as a way of transmitting energy has been an interesting subject to study. While cyclic oscillation is usually associated with fatigue effect, and hence a detrimental factor in failure of structures and machineries, by controlled transmission of vibration, energy can be transferred from the source to the target. In this thesis, the application of such mechanical vibration in a few surgical procedures is demonstrated.

Three challenges associated with lung cancer diagnosis and treatment are chosen for this purpose, namely, Motion Compensation, tumor targeting in lung Needle Insertion and Soft Tissue Dissection:

  1. A robotic solution is proposed …


Design Of A Haptic Interface For Medical Applications Using Magneto-Rheological Fluid Based Actuators, Nima Najmaei Dec 2014

Design Of A Haptic Interface For Medical Applications Using Magneto-Rheological Fluid Based Actuators, Nima Najmaei

Electronic Thesis and Dissertation Repository

This thesis reports on the design, construction, and evaluation of a prototype two degrees-of-freedom (DOF) haptic interface, which takes advantage of Magneto-Rheological Fluid (MRF) based clutches for actuation. Haptic information provides important cues in teleoperated systems and enables the user to feel the interaction with a remote or virtual environment during teleoperation. The two main objectives in designing a haptic interface are stability and transparency. Indeed, deficiencies in these factors in haptics-enabled telerobotic systems has the introduction of haptics in medical environments where safety and reliability are prime considerations. An actuator with poor dynamics, high inertia, large size, and heavy …


Uncertainty Quantification For A Class Of Mems-Based Vibratory Angular Rate Sensors, Nujhat Abedin Aug 2014

Uncertainty Quantification For A Class Of Mems-Based Vibratory Angular Rate Sensors, Nujhat Abedin

Electronic Thesis and Dissertation Repository

Numerical schemes that are suitable for predicting response statistics of mass-spring and ring gyroscopes are developed when this class of vibratory gyroscopes are subjected to certain system parameters as well as environment uncertainties. The emphasis is placed on the steady-state part of the response since it is more critical to the operation of a gyroscope. A peak-picking approach which simulates the demodulation process which is used in practice is employed first before applying the Monte Carlo simulation method to predict the response statistics. A number of simulation trials to predict response statistics have been performed for mass-spring and ring-type gyroscopes …


Development Of Microfabrication Process For Micro Inductive Sensors, Xueguang Han Sep 2013

Development Of Microfabrication Process For Micro Inductive Sensors, Xueguang Han

Electronic Thesis and Dissertation Repository

Inductive position/angle sensors are widely used in vehicles and have very bright market prospects. However, the current sensor designs often suffer from high space consuming which increases the assembly size of vehicle parts. In addition, the high emission of traditional inductive sensors can cause the interference with other electronic components. In this dissertation, a novel and reliable microfabrication process was developed to fabricate a newly designed miniaturized inductive sensor for gas pedal use. The HFSS simulation has proved that the newly developed inductive sensor could provide sufficient sensitivity to meet the sensing requirements. The performance of the sensor was well …


Multimodal Noncontact Tracking Of Surgical Instruments, Tara Bracken Aug 2013

Multimodal Noncontact Tracking Of Surgical Instruments, Tara Bracken

Electronic Thesis and Dissertation Repository

For many procedures, open surgery is being replaced with minimally invasive surgical (MIS) techniques. The advantages of MIS include reduced operative trauma and fewer complications leading to faster patient recovery, better cosmetic results and shorter hospital stays.

As the demand for MIS procedures increases, effective surgical training tools must be developed to improve procedure efficiency and patient safety. Motion tracking of laparoscopic instruments can provide objective skills assessment for novices and experienced users. The most common approaches to noncontact motion capture are optical and electromagnetic (EM) tracking systems, though each approach has operational limitations. Optical trackers are prone to occlusion …


Design Of A Minimally Invasive Single Port Hdr Brachytherapy Applicator For The Treatment Of Lung Cancer, Mauricio Nahum Leroy Aug 2013

Design Of A Minimally Invasive Single Port Hdr Brachytherapy Applicator For The Treatment Of Lung Cancer, Mauricio Nahum Leroy

Electronic Thesis and Dissertation Repository

Cancer has become the number one cause of death in Canada and lung cancer is its deadliest form. Surgical resection remains as the treatment of choice for most patients; however, in many cases a less aggressive alternative such as brachytherapy may be preferable. Today, HDR brachytherapy is a relatively common procedure but with current techniques and equipment only tumours close to the main bronchi can be reached.

This project describes the design, development and validation of a first prototype of an ultrasound-guided needle guidance system that would enable physicians to perform HDR brachytherapy for the treatment of lung cancer in …


Development Of A Compact Piezoworm Actuator For Mr Guided Medical Procedures, Khaled El Bannan Dec 2012

Development Of A Compact Piezoworm Actuator For Mr Guided Medical Procedures, Khaled El Bannan

Electronic Thesis and Dissertation Repository

In this research, a novel piezoelectric actuator was developed to operate safely inside the magnetic resonance imaging (MRI) machine. The actuator based on novel design that generates linear and rotary motion simultaneously for higher needle insertion accuracy. One of the research main objectives is to aid in the selection of suitable materials for actuators used in this challenging environment. Usually only nonmagnetic materials are used in this extremely high magnetic environment. These materials are classified as MRI compatible materials and are selected to avoid hazardous conditions and image quality degradation. But unfortunately many inert materials to the magnetic field do …


Development Of A Novel Handheld Device For Active Compensation Of Physiological Tremor, Abhijit Saxena Oct 2012

Development Of A Novel Handheld Device For Active Compensation Of Physiological Tremor, Abhijit Saxena

Electronic Thesis and Dissertation Repository

In microsurgery, the human hand imposes certain limitations in accurately positioning the tip of a device such as scalpel. Any errors in the motion of the hand make microsurgical procedures difficult and involuntary motions such as hand tremors can make some procedures significantly difficult to perform. This is particularly true in the case of vitreoretinal microsurgery. The most familiar source of involuntary motion is physiological tremor. Real-time compensation of tremor is, therefore, necessary to assist surgeons to precisely position and manipulate the tool-tip to accurately perform a microsurgery. In this thesis, a novel handheld device (AID) is described for compensation …


An Automated Lab-On-A-Cd System For Parallel Whole Blood Analyses, Tingjie Li Aug 2012

An Automated Lab-On-A-Cd System For Parallel Whole Blood Analyses, Tingjie Li

Electronic Thesis and Dissertation Repository

Medical diagnostics plays a critical role in human healthcare. Blood analysis is one of the most common clinical diagnostic assays. Biomedical engineers have been developing portable and inexpensive diagnostic tools that enable fast and accurate tests for individuals who have limited resources in places that require such field applications. The emergence of Lab-on-a-CD technology provides a compact centrifugal platform for high throughput blood analysis in point-of-care (POC) diagnostics. The objective of this thesis work is to develop a Lab-on-a-CD system for parallel quantitative detection of blood contents.

Blood separation is a key step in blood analysis. By integrating out-of-plane microvalves …


Electrohydrodynamic Enhancement Of Heat Transfer And Mass Transport In Gaseous Media, Bulk Dielectric Liquids And Dielectric Thin Liquid Films, Seyed Reza Mahmoudi May 2012

Electrohydrodynamic Enhancement Of Heat Transfer And Mass Transport In Gaseous Media, Bulk Dielectric Liquids And Dielectric Thin Liquid Films, Seyed Reza Mahmoudi

Electronic Thesis and Dissertation Repository

Controlling transport phenomena in liquid and gaseous media through electrostatic forces has brought new important scientific and industrial applications. Although numerous EHD applications have been explored and extensively studied so far, the fast-growing technologies, mainly in the semiconductor industry, introduce new challenges and demands. These challenges require enhancement of heat transfer and mass transport in small scales (sometimes in molecular scales) to remove highly concentrated heat fluxes from reduced size devices. Electric field induced flows, or electrohydrodynamics (EHD), have shown promise in both macro and micro-scale devices.

Several existing problems in EHD heat transfer enhancements were investigated in this thesis. …