Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Doctoral Dissertations

University of Tennessee, Knoxville

Discipline
Keyword
Publication Year

Articles 1 - 30 of 133

Full-Text Articles in Mechanical Engineering

Dynamics Modeling Of Molten Salt Reactors, Visura Umesh Pathirana Dec 2023

Dynamics Modeling Of Molten Salt Reactors, Visura Umesh Pathirana

Doctoral Dissertations

The abundance of energy is a necessity for the prosperity of humans. The rise in energy demand has created energy shortages and issues related to energy security. Nuclear energy can produce vast amounts of reliable energy without many of the negative externalities associated with other competing energy sources, such as coal and natural gas. As a result, public interest in nuclear power has increased in the past decade. Many new types of nuclear reactor are proposed. These nuclear reactor designs feature many passive technologies that can operate without external influence. Reactors that feature advanced passive safety features are catagorized as …


Stress Relaxation Cracking In 347h Austenitic Steel Weldments Under Various Heat Treatments: Experiments And Modeling, Yi Yang Dec 2023

Stress Relaxation Cracking In 347h Austenitic Steel Weldments Under Various Heat Treatments: Experiments And Modeling, Yi Yang

Doctoral Dissertations

347H austenitic stainless steel exhibits exceptional creep and corrosion resistance, rendering it an exemplary candidate for pipeline materials, particularly in mid- to high-temperature working conditions. However, due to constraints in component dimensions, welding has been chosen as the preferred method for joining pipeline systems extensively employed in nuclear power plants, fossil fuel plants, and petrochemical companies. The welding process entails the accumulation of residual stress during the cooling stage, along with the introduction of microstructure evolution. Moreover, the residual stress field and microstructure continuously evolve under service conditions, thereby intensifying the susceptibility of crack initiation and propagation. The initial residual …


A Two-Diameter Helical Endmill Beam Model For Tool Tip Dynamics Prediction With Application To Milling, Emma D. Betters Dec 2023

A Two-Diameter Helical Endmill Beam Model For Tool Tip Dynamics Prediction With Application To Milling, Emma D. Betters

Doctoral Dissertations

The aim of this dissertation is to describe the dynamic response of helical endmill geometries to enable the use of receptance coupling substructure analysis (RCSA) to predict the tool tip vibration response of arbitrary tool-holder-spindle-machine combinations. The tool tip vibration response, or receptance, is a key input for milling stability prediction. Currently, a measurement is required to determine the tool tip receptance for each tool-holder-spindle-machine combination, which may not be possible in production environments. In the RCSA approach, the spindle receptances are measured once and archived, while the tool and holder are modeled. Tool tip receptances are predicted by analytically …


Additively Manufactured Nature Inspired Morphology For Redesign: Advancing Next Generation Energy Systems, Vanshika Singh Dec 2023

Additively Manufactured Nature Inspired Morphology For Redesign: Advancing Next Generation Energy Systems, Vanshika Singh

Doctoral Dissertations

To meet cleaner energy goals and increasing demand, energy systems such as gas turbines and power plants are required to be operated under harsh loading conditions like higher temperatures and pressures, fluctuating loads, and corrosive environments. Advanced manufacturing techniques such as additive manufacturing (AM) have put us on the trajectory for next-generation system designs, allowing complex geometries and high-temperature alloys with tailored material properties. We need new and systematic design philosophies to use AM's unique characteristics prudently. For a given functionality, nature tends to provide similar solutions in animate and inanimate structures. We propose to take inspiration from nature's repetitive …


Development And Biomechanical Analysis Toward A Mechanically Passive Wearable Shoulder Exoskeleton, Seyyed Morteza Asgari Dec 2023

Development And Biomechanical Analysis Toward A Mechanically Passive Wearable Shoulder Exoskeleton, Seyyed Morteza Asgari

Doctoral Dissertations

Shoulder disability is a prevalent health issue associated with various orthopedic and neurological conditions, like rotator cuff tear and peripheral nerve injury. Many individuals with shoulder disability experience mild to moderate impairment and struggle with elevating the shoulder or holding the arm against gravity. To address this clinical need, I have focused my research on developing wearable passive exoskeletons that provide continuous at-home movement assistance. Through a combination of experiments and computational tools, I aim to optimize the design of these exoskeletons.

In pursuit of this goal, I have designed, fabricated, and preliminarily evaluated a wearable, passive, cam-driven shoulder exoskeleton …


Spall Characteristics Of Additively Manufactured Stainless Steel, Kevin Lamb Aug 2023

Spall Characteristics Of Additively Manufactured Stainless Steel, Kevin Lamb

Doctoral Dissertations

Additive manufacturing (AM) has rapidly transformed from a novelty prototyping technology into a growing sector of production across a wide range of industries. Much work has been documented in literature to demonstrate the behavior of AM products under static and quasi-static loading conditions. However, the behavior of AM materials under high strain rate loading is not as well understood. This research attempts to advance the fundamental knowledge of the relationship between the unique aspects of AM and the mechanical performance under high velocity impact loading conditions.

This project examines the behavior of AM 316L stainless steel (SS) exposed to high …


Heat Pump Integrated Thermal Storage For Building Demand Response And Decarbonization, Sara Sultan Aug 2023

Heat Pump Integrated Thermal Storage For Building Demand Response And Decarbonization, Sara Sultan

Doctoral Dissertations

This work presents a novel thermal energy storage (TES) integrated with existing residential heat pump (HP). The research focuses on controls and configuration for energy, demand, cost and carbon emissions savings for residential buildings’ energy consumption. This work will be significant in developing a framework especially for reduced energy demand and carbon emissions associated with space heating and cooling in residential buildings. Since buildings account for about 40% primary energy consumption in U.S. and half of that is associated with HP.

An existing air source HP in integrated with a phase change material (PCM) based TES via active configuration where …


An Automated, Deep Learning Approach To Systematically & Sequentially Derive Three-Dimensional Knee Kinematics Directly From Two-Dimensional Fluoroscopic Video, Viet Dung Nguyen Aug 2023

An Automated, Deep Learning Approach To Systematically & Sequentially Derive Three-Dimensional Knee Kinematics Directly From Two-Dimensional Fluoroscopic Video, Viet Dung Nguyen

Doctoral Dissertations

Total knee arthroplasty (TKA), also known as total knee replacement, is a surgical procedure to replace damaged parts of the knee joint with artificial components. It aims to relieve pain and improve knee function. TKA can improve knee kinematics and reduce pain, but it may also cause altered joint mechanics and complications. Proper patient selection, implant design, and surgical technique are important for successful outcomes. Kinematics analysis plays a vital role in TKA by evaluating knee joint movement and mechanics. It helps assess surgery success, guides implant and technique selection, informs implant design improvements, detects problems early, and improves patient …


Development Of A Soft Robotic Approach For An Intra-Abdominal Wireless Laparoscopic Camera, Hui Liu Aug 2023

Development Of A Soft Robotic Approach For An Intra-Abdominal Wireless Laparoscopic Camera, Hui Liu

Doctoral Dissertations

In Single-Incision Laparoscopic Surgery (SILS), the Magnetic Anchoring and Guidance System (MAGS) arises as a promising technique to provide larger workspaces and field of vision for the laparoscopes, relief space for other instruments, and require fewer incisions. Inspired by MAGS, many concept designs related to fully insertable magnetically driven laparoscopes are developed and tested on the transabdominal operation. However, ignoring the tissue interaction and insertion procedure, most of the designs adopt rigid structures, which not only damage the patients' tissue with excess stress concentration and sliding motion but also require complicated operation for the insertion. Meanwhile, lacking state tracking of …


Intelligent Traffic Control With Connected And Automated Vehicles, Yang Shi May 2023

Intelligent Traffic Control With Connected And Automated Vehicles, Yang Shi

Doctoral Dissertations

The recent advancements in communication technology, transportation infrastructure, computational techniques, and artificial intelligence are driving a revolution in future transportation systems. Connected and Automated Vehicles (CAVs) are attracting a lot of attention due to their potential to reduce traffic accidents, ease congestion, and improve traffic efficiency. This study focuses on addressing the challenges in controlling future CAV-enabled transportation systems. The aim is to develop a framework for the control of CAV-based traffic systems to improve roadway safety, travel efficiency, and energy efficiency. The study proposes new methods for vehicle speed control and traffic signal control at signalized intersections and corridors …


Investigating The Electrochemical Performance Of Biphenyl-Sodium Polysulfide Organic Redox Flow Batteries, Mohammad Bahzad May 2023

Investigating The Electrochemical Performance Of Biphenyl-Sodium Polysulfide Organic Redox Flow Batteries, Mohammad Bahzad

Doctoral Dissertations

With the increased utilization of renewable energy sources, demand for long-duration energy storage systems has increased to moderate the intermittent power generation problem of these sources. Among the various energy storage technologies, those based on electrochemical conversion have received tremendous attention in recent decades. Organic redox flow batteries (ORFBs) are promising candidates for large-scale energy storage. The advantages of ORFBs are flexibility, wide voltage window, high energy density, and low cost. Although recent developments in ORFBs are promising, their future implementation requires further development, especially to understand their electrochemical performance and alleviate system inefficiencies. Most of ORFBs' performance loss comes …


Space-Angle Discontinuous Galerkin Finite Element Method For Radiative Transfer Equation, Hang Wang May 2023

Space-Angle Discontinuous Galerkin Finite Element Method For Radiative Transfer Equation, Hang Wang

Doctoral Dissertations

Radiative transfer theory describes the interaction of radiation with scattering and absorbing media. It has applications in neutron transport, atmospheric physics, heat transfer, molecular imaging, and others. In steady state, the radiative transfer equation is an integro-differential equation of five independent variables, which are 3 dimensions in space and 2 dimensions in the angular direction. This high dimensionality and the presence of the integral term present serious challenges when solving the equation numerically. Over the past 50 years, several techniques for solving the radiative transfer equation (RTE) have been introduced. These include, but are certainly not limited to, Monte Carlo …


Advanced Thomson Scattering Diagnostics For Various Applications, Zichen He Dec 2022

Advanced Thomson Scattering Diagnostics For Various Applications, Zichen He

Doctoral Dissertations

Controlled nuclear fusion has been pursued as an ideal form of renewable energy for decades and the study of fusion plasma is fueling an increased demand for diagnostic capability. Furthermore, with the increasing applications of plasma in industry and medicine, it has become essential to characterize plasma dynamics and properties. Laser Thomson scattering diagnostics are considered to be the most reliable plasma diagnostic approaches for measuring electron temperature and electron density, the two most important parameters of a plasma. Four advanced Thomson scattering systems are discussed in this work to respectively address four different limitations or difficulties commonly encountered in …


Improving Strength And Stability In Continuum Robots, Jake A Childs Dec 2022

Improving Strength And Stability In Continuum Robots, Jake A Childs

Doctoral Dissertations

Continuum robots, which are bio-inspired ’trunk-like’ robots, are characterized for their inherent compliance and range of motion. One of the key challenges in continuum robotics research is developing robots with sufficient strength and stability without adding additional weight or complexity to the design. The research conducted in this dissertation encompasses design and modeling strategies that address these challenges in strength and stability. This work improves three continuum robot actuation paradigms: (1) tendon-driven continuum robots (TDCR), (2) concentric tube robots (CTR), and (3) concentric push-pull robots (CPPR). The first chapter of contribution covers strategies for improving strength in TDCRs. The payload …


Investigation Of Fore-Aft Element Connectors For An Ultra-Efficient Slotted, Natural-Laminar-Flow Aircraft Wing, Corey M. Arndt Dec 2022

Investigation Of Fore-Aft Element Connectors For An Ultra-Efficient Slotted, Natural-Laminar-Flow Aircraft Wing, Corey M. Arndt

Doctoral Dissertations

The SNLF [slotted, natural-laminar-flow airfoil] is a revolutionary technology projected to contribute significant decreases in fuel consumption and carbon emissions. The SNLF is designed to allow favorable pressure gradients to extend further aft increasing the extent of laminar flow achievable to about 90% of the entire airfoil, thus reducing the wing profile drag and subsequently fuel consumption. The SNLF is not without its complexity as it introduces several design challenges to maintain laminar flow. The slot width must be maintained during flight to engage the favorable pressure gradients that enable these benefits. As such a crucial aspect for implementing this …


Multiscale Investigation Of Freeze Cast Process And Ion Transport For Graphene Aerogel Electrodes, Yu-Kai Weng Dec 2022

Multiscale Investigation Of Freeze Cast Process And Ion Transport For Graphene Aerogel Electrodes, Yu-Kai Weng

Doctoral Dissertations

Effective use of renewable energy resources has been regarded as the most promising solution to climate emergency and energy crisis. However, the fluctuating and intermittent nature of renewable resources causes stability issues in the electric grid. High-capacity electrical energy storage is essential to stabilize the electric power supply using renewable resources. Among various types of energy storage systems, organic redox flow battery (ORFB) has attracted attentions due to their high stability, flexibility, low cost, and environmental compatibility, but the performance of the ORFB still needs a significant improvement due to their low energy or current density. Specifically, even though the …


Aluminum-Based Material Fabrication By Friction Stir Processing: Microstructural Evolution And Mechanical Properties, Suhong Zhang Aug 2022

Aluminum-Based Material Fabrication By Friction Stir Processing: Microstructural Evolution And Mechanical Properties, Suhong Zhang

Doctoral Dissertations

Friction stir processing (FSP) is an energy efficient solid-state material processing technique for microstructure modification of commercial high-strength Al alloys. Many variant techniques were developed in recent years that enabled light-weight and high-strength structure fabrication. Identifying relationship among process conditions, microstructures, and mechanical properties is of critical importance to facilitate the practical implementation of these new techniques. The research in the dissertation focusses on developing two main techniques of the FSP: a) friction stir back extrusion (FSBE) of 6063 aluminum alloy for tube making and b) FSP of 7075 aluminum alloy from powder feedstock. FSBE fabricated Al 6063 alloy tubes …


Heat Pipes With Arbitrary Boundary Conditions, Katrina Sweetland Aug 2022

Heat Pipes With Arbitrary Boundary Conditions, Katrina Sweetland

Doctoral Dissertations

Heat pipes passively transfer heat in numerous applications. Traditionally one side of the heat pipe is coupled to a heat source (evaporator) while the opposite side is coupled to a heat sink (condenser). This configuration has working fluid stagnation points at each end of the heat pipe. Other configurations may also prove useful, such as heat pipes with multiple evaporators or multiple condensers. In such heat pipes, additional working fluid stagnation points form at locations dependent on the configuration of the thermal boundary conditions. These stagnation points divide the heat pipe into multiple cells that each have an evaporator and …


Modelling, Sensing, And Control Of Weld Beads In Gravity Aligned And Non-Gravity Aligned Orientations For Wire Arc Additive Manufacturing, Joshua J. Penney May 2022

Modelling, Sensing, And Control Of Weld Beads In Gravity Aligned And Non-Gravity Aligned Orientations For Wire Arc Additive Manufacturing, Joshua J. Penney

Doctoral Dissertations

Wire Arc Additive Manufacturing (WAAM) has recently developed into a viable manufacturing process for large, complex metal parts. The WAAM process uses a Gas Metal Arc Welding (GMAW) torch mounted to an automated motion platform to execute a predetermined path plan based on a desired CAD geometry. As the desired geometry becomes more complex, it is advantageous to utilize out-of-position welding techniques used by human welders to stabilize the weld pool during the deposition of large overhangs. To ensure part accuracy and quality, adding layers of real-time control to manage various aspects of the WAAM process is critical. First, a …


Model Based Force Estimation And Stiffness Control For Continuum Robots, Vincent A. Aloi May 2022

Model Based Force Estimation And Stiffness Control For Continuum Robots, Vincent A. Aloi

Doctoral Dissertations

Continuum Robots are bio-inspired structures that mimic the motion of snakes, elephant trunks, octopus tentacles, etc. With good design, these robots can be naturally compliant and miniaturizable, which makes Continuum Robots ideal for traversing narrow complex environments. Their flexible design, however, prevents us from using traditional methods for controlling and estimating loading on rigid link robots.

In the first thrust of this research, we provided a novel stiffness control law that alters the behavior of an end effector during contact. This controller is applicable to any continuum robot where a method for sensing or estimating tip forces and pose exists. …


Environmental Design And Optimization Of Modular Hydropower Plants, Colin Sasthav May 2022

Environmental Design And Optimization Of Modular Hydropower Plants, Colin Sasthav

Doctoral Dissertations

This research aimed to understand the pathways to cost-effective and sustainable low-head hydropower. Designing viable hydropower projects requires optimization across many economic, environmental, and social outcomes. However, existing run-of-river hydropower design models often focus on economic performance and customizing technologies for high-head diversion schemes. Standard modular hydropower is a new design approach that uses standardized rather than custom-designed technologies to achieve economies of scale. Oak Ridge National Laboratory established a conceptual outline for module classes based on functions, such as generation modules and fish passage modules, but further research was needed to identify how modules should be selected and operated …


Electrode Development Of Water Electrolyzer Cells For Low-Cost And High-Efficiency Hydrogen Production, Shule Yu May 2022

Electrode Development Of Water Electrolyzer Cells For Low-Cost And High-Efficiency Hydrogen Production, Shule Yu

Doctoral Dissertations

A worldwide increase in energy demand and a latent crisis in the fossil fuel supply have spurred broad research in the renewable energy. Currently, most renewable energy resources (e.g., hydro, wind, solar, tide) face supply challenges as they are known to be intermittent, unstable, and locally shackled, which calls for urgent development in energy storage and conversion. Hydrogen is regarded as an ideal energy carrier with its advantages (e.g., high energy density, environmentally friendliness, and low weight). In practice, the proton exchange membrane electrolyzer cell (PEMEC) is considered to be one of the optimal hydrogen production and energy storage devices …


Trajectory Planning Of Non-Gravity Aligned (Nga) Segments In Arbitrary Directions For Large Scale Additive Manufacturing Of Metals (Lsamm), James Logan Mcneil May 2022

Trajectory Planning Of Non-Gravity Aligned (Nga) Segments In Arbitrary Directions For Large Scale Additive Manufacturing Of Metals (Lsamm), James Logan Mcneil

Doctoral Dissertations

Traditionally, slicing and path planning are done along the gravity-aligned direction of a part, causing more complex geometrical shapes to have unsupported overhangs. Wire Arc Additive Manufacturing (WAAM) has typically handled overhangs with a robotic part positioner; but, to extend the current capabilities of LSAMM, a new framework for slicing and building parts out of gravity alignment has been developed. The proposed framework focuses on segmenting more complex geometrical parts into gravity-aligned (GA), non-gravity aligned (NGA), and transition zones to support tool-path generation. GA and NGA segments can be planned with traditional slicing techniques, but the NGA tool-paths must be …


Processing Of Preceramic Polymers For Direct-Ink Writing, James W. Kemp Dec 2021

Processing Of Preceramic Polymers For Direct-Ink Writing, James W. Kemp

Doctoral Dissertations

Preceramic polymers are organosilicon polymers that, when pyrolyzed to above 1000°C, convert from a polymer to an amorphous ceramic. These polymers have been used for fiber spinning, polymer infiltration, and casting of materials but have recently gained interest for use as the feedstock material for additive manufacturing techniques. This work explores preceramic polymers being used for direct-ink writing (an additive manufacturing method) and many of the issues that occur with the polymers during curing and pyrolysis.

The first chapter of this dissertation provides a review of preceramic polymers, while the second and third chapters focus on the development of inks …


Interfacial Bonding Between Thermoset And Thermoplastic Polyurethane Reinforced Textile Grade Carbon Fiber: Structure Property Relationships, Surbhi Subhash Kore Dec 2021

Interfacial Bonding Between Thermoset And Thermoplastic Polyurethane Reinforced Textile Grade Carbon Fiber: Structure Property Relationships, Surbhi Subhash Kore

Doctoral Dissertations

The research work focused on examining the interfacial adhesion of unsized, epoxy, and urethane-sized textile grade carbon fiber (TCF) reinforced in different classes of polyurethane (PU) thermoplastic (TPU) and thermoset (TSU) polyurethane (PU) through the structure-property relationship. The Carbon Fiber Technology Facility (CFTF) at Oak Ridge National Laboratory (ORNL) has produced TCF to reduce the cost of commercial-grade carbon fiber. The first part of the research examined the fundamental relationships between (a) soft segment thermoplastic polyurethane (S-TPU), (b) hard segment thermoplastic polyurethane (H-TPU), (c) thermoset polyurethane (TSU) and TCF reinforcement’s molecular behavior at the interface using the surface and thermal …


A Multi-Scale Homogenization Scheme For Modeling Anisotropic Material’S Elastic And Failure Response, Justin Matthew Garrard Dec 2021

A Multi-Scale Homogenization Scheme For Modeling Anisotropic Material’S Elastic And Failure Response, Justin Matthew Garrard

Doctoral Dissertations

The effect of small-scale random defects such as microcracks or inclusions are critical to the prediction of material failure, yet including these in a fracture simulation can be difficult to perform efficiently. Typically, work has focused on implementing these through a statistical characterization of the micro- or meso-scales. This characterization has traditionally focused on the spatial distribution of faults, assuming the material is purely isotropic. At the macro-scale, many materials can be assumed to be fully isotropic and homogeneous, but at the small scale may show significant anisotropy or heterogeneity. Other materials may be effectively anisotropic in bulk, such as …


Structural Stability Of Thermosets During Material Extrusion Additive Manufacturing, Stian K. Romberg Dec 2021

Structural Stability Of Thermosets During Material Extrusion Additive Manufacturing, Stian K. Romberg

Doctoral Dissertations

Over the past decade, the scale of polymer additive manufacturing has been revolutionized with machines that print massive thermoplastic parts with greater geometric complexity than can be achieved by traditional manufacturing methods. However, the heat required to print thermoplastics consumes energy and induces thermal gradients that can reduce manufacturing flexibility and final mechanical properties. With the ability to be extruded at room temperature and excellent compatibility with fibers and fillers, thermoset resins show promise to decrease the energy consumption, expand the manufacturing flexibility, and broaden the material palette offered by large-scale polymer additive manufacturing. However, structural instability in the uncured …


Innovations In Aligned And Overmolded Long Fiber Thermoplastic Composites, Shailesh P. Alwekar Dec 2021

Innovations In Aligned And Overmolded Long Fiber Thermoplastic Composites, Shailesh P. Alwekar

Doctoral Dissertations

Long fiber thermoplastic (LFT) composite materials are increasingly used in high performance lightweight automotive, sporting, and industrial applications. LFT composites are processed with extrusion-compression molding (ECM) and/or injection molding (IM). Melt extrusion offers unique opportunities to align long fibers in a thermoplastic polymer melt. The properties of LFT materials are highly influenced by processing techniques which leads to different porosity content, fiber length distribution, and fiber orientation distribution. Hence, it is important to understand the various LFT processing techniques and their effect on mechanical, thermal, and microscopic properties.

The fundamental process-property relationships in LFT composites are investigated in this dissertation. …


Experimental And Computational Study Of Determining Mass Transport Parameters In Vanadium Redox Flow Batteries, Tugrul Y. Ertugrul Aug 2021

Experimental And Computational Study Of Determining Mass Transport Parameters In Vanadium Redox Flow Batteries, Tugrul Y. Ertugrul

Doctoral Dissertations

Vanadium redox flow batteries are a promising large-scale energy storage technology, but a number of challenges must be overcome for commercial implementation. At the cell level, mass transport contributes significantly to performance losses, limiting VRFB performance. Therefore, understanding mass transport mechanisms in the electrode is a critical step to mitigating such losses and optimizing VRFBs.

In this study, mass transport mechanisms (e.g. convection, diffusion) are investigated in a VRFB test bed using a strip cell architecture, having 1 cm2 active area. It is found that diffusion-dominated cells have large current gradients; convection-dominated cells have relatively uniform current distribution from …


Digital Cutting Force Modeling For Milling Operations, Timothy T. No Aug 2021

Digital Cutting Force Modeling For Milling Operations, Timothy T. No

Doctoral Dissertations

Process improvement in milling through improved understanding of machining dynamics is an on-going research endeavor. The objective of this project is to advance digital modeling of the milling process by incorporating tool-specific geometry in the machining analysis. Structured light scanning will be used to perform tool geometry measurements and produce a 3D model. The 3D model data will include the spatial location of the cutting edges, as well as the rake and relief profiles from the tool cross section. The rake and relief profiles will be imported, together with the work material flow stress model, into a finite element analysis …