Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Mechanical Engineering

Dispersion Of Particles On Liquid Surfaces, Sathishkumar Gurupatham Aug 2011

Dispersion Of Particles On Liquid Surfaces, Sathishkumar Gurupatham

Dissertations

When small particles (e.g., flour, pollen, etc.) come in contact with a liquid surface, they immediately disperse. The dispersion can occur so quickly that it appears explosive, especially for small particles on the surface of mobile liquids like water. This explosive dispersion is the consequence of capillary force pulling particles into the interface causing them to accelerate to a relatively large velocity. The maximum velocity increases with decreasing particle size; for nanometer-sized particles (e.g., viruses and proteins), the velocity on an air-water interface can be as large as 47 m/s. They also oscillate at a relatively high ...


Modeling Of Non-Uniform Hydrodynamics And Catalytic Reaction In A Solids-Laden Riser, Rajeshkumar Patel May 2011

Modeling Of Non-Uniform Hydrodynamics And Catalytic Reaction In A Solids-Laden Riser, Rajeshkumar Patel

Dissertations

The riser reactors are widely used in a variety of industrial applications such as polymerization, coal combustion and petroleum refinery because of the strong mixing of gas and solids that yields high heat and mass transfer rates, and reaction rates. In a Fluid Catalytic Cracking (FCC) process, the performance of riser reactor is strongly dependent on the interaction between the fluid and catalysts, since the reaction takes place on the active surface of the catalysts. This is why, the local coupling between hydrodynamics and reaction kinetics is critical to the development of riser reaction models. The local gas-solids flow structure ...