Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 13 of 13

Full-Text Articles in Mechanical Engineering

Software Tool For Analyzing The Bending Strength Of Gear Teeth, Tayla Hall Dec 2020

Software Tool For Analyzing The Bending Strength Of Gear Teeth, Tayla Hall

Honors Theses

Current finite element (FE) models for gear analysis are computationally expensive. We will develop a software tool in Excel to efficiently assess the effect of different root geometries on gear tooth bending strength. The tool will assess the change in root stress as the root fillet shape is changed, using a 2-D model of a representative gear tooth using an A to B comparison. This is assumed to correlate to equivalent stress reduction in an actual gear. The tool will be validated by comparing the root stress found using the software to a FE analysis of root stress using ANSYS. …


Synthesis And Characterization Of Non-Pgm Catalysts For Fuel Cell Applications, Sudharsan Sridhar Dec 2020

Synthesis And Characterization Of Non-Pgm Catalysts For Fuel Cell Applications, Sudharsan Sridhar

Masters Theses

Fuel Cells convert the chemical energy of a fuel and an oxidizing agent into electricity through a pair of redox reactions. Proton Exchange Membrane (PEM) fuel cells convert (efficiency-60%) hydrogen and air to power the electric motors with zero emissions, facilitating the development of environmentally friendly and sustainable automobile technologies. One of the major obstacles for larger commercial viability of Fuel Cells for automobile applications is their cost-effectiveness. Currently, fuel cells use platinum as a catalyst material, which is prohibitively expensive for commercial automobile applications. The development of non-Platinum Group Metal (non-PGM) catalyst materials with similar electrochemical performance to that …


Experimental And Numerical Investigation Of Free Water Surface Evaporation In Case Of Natural Convection, Hassan Fagehi Jun 2020

Experimental And Numerical Investigation Of Free Water Surface Evaporation In Case Of Natural Convection, Hassan Fagehi

Dissertations

Evaporation of water can be considered an essential part of the hydrological cycle. It is important for many technological applications such as industrial cooling towers, air conditioning, solid material drying, distillation, and liquid film cooling. Moreover, the interfacial convection caused by the density gradient belongs to Rayleigh convection, which plays an important role in the evaporation process by means of intensifying heat and mass transfer, as in an isopropanol‒water system. In addition, natural convection, which can be defined as a buoyancy-driven flow, is important in astrophysics, geophysics, and numerous engineering applications such as solar energy systems, cooling of electrical equipment, …


Use Of Dimpling Techniques To Alter The Vibration And Acoustic Characteristics Of Beams And Plates, Mofareh Ghazwani Jun 2020

Use Of Dimpling Techniques To Alter The Vibration And Acoustic Characteristics Of Beams And Plates, Mofareh Ghazwani

Dissertations

Structures such as beams and plates can produce potentially high levels of unwanted vibrations and noises in the environment. A method for improving the vibroacoustic characteristics of structures based on creating dimples on its surfaces is presented in this study. The goal of this technique is to keep the mass of the subject structure the same while changing its vibration and sound radiation characteristics. A boundary value model (BVM), derived using Hamilton’s Variational Principle, is used for modeling dimpled beams subjected to various boundary conditions. Using this method, the non-dimensional equations of motion, boundary conditions, and continuity conditions for a …


Turbulence Investigations In The Core-Flow Of An Internal Combustion Engine, James R. Macdonald Jun 2020

Turbulence Investigations In The Core-Flow Of An Internal Combustion Engine, James R. Macdonald

Dissertations

Turbulence significantly impacts the operation of energy conversion devices. In internal combustion (IC) engines, mixing, heat transfer, and combustion are all strongly dependent on the turbulence inside the cylinder. Consequently, knowledge of the state of turbulence is critical for improving our understanding and modeling of engine processes.

Turbulence states may be determined through analysis of the Reynolds stress tensor, which can in turn be experimentally quantified using velocity data. In this research, stereoscopic particle image velocimetry (stereo-PIV) experiments were conducted in a single-cylinder, motored engine with optical access to measure the two-dimensional, three-component (2D-3C) velocity fields throughout the compression stroke. …


Experimental Study Of Collecting Running Water From Moderately Heated Water Vapors Using Turbulence-Induced Particles Collision (Tipc) Device, Hassan Ali Ghazwani Jun 2020

Experimental Study Of Collecting Running Water From Moderately Heated Water Vapors Using Turbulence-Induced Particles Collision (Tipc) Device, Hassan Ali Ghazwani

Dissertations

This dissertation describes the development of an alternative technique to collect water vapors or changing any vapor state to liquid state using a device called the turbulence-induced particles collision generator (TIPC). The experiment of collecting water vapors using the TIPC device is conducted at different values of temperature. The spatial patterns of droplets deposited on a wall due to the TIPC are measured at different values of pressure using luminescent oil technique, and the integrated intensity of deposited droplets is calculated. Also, the luminescent oil technique has been used to visualize the deposited particles on a pipe wall. ANSYS FLUENT …


Design Of A Carbon Fiber Composite Monocoque Chassis For A Formula-Style Vehicle, Alexander Carline Apr 2020

Design Of A Carbon Fiber Composite Monocoque Chassis For A Formula-Style Vehicle, Alexander Carline

Honors Theses

Western Michigan University’s Formula SAE team, Bronco Racing, designs and manufactures a formula-style vehicle to compete annually at an international collegiate design and racing competition. In order to remain competitive, Bronco Racing required a lighter chassis for the 2021 vehicle. To achieve this, the full 2020 carbon fiber monocoque chassis system was redesigned to be lightweight while considering packaging constraints, the Formula SAE rules, and design parameters set by Bronco Racing. The monocoque geometry was modeled using SolidWorks and the carbon composite was simulated, tested, and verified using ANSYS and quasi-static load frame testing. The newly designed 2021 monocoque chassis …


Design Of A Carbon Fiber Composite Monocoque Chassis For A Formula Style Vehicle, Mitchell Hiller Apr 2020

Design Of A Carbon Fiber Composite Monocoque Chassis For A Formula Style Vehicle, Mitchell Hiller

Honors Theses

Western Michigan University’s Formula SAE team, Bronco Racing, designs and manufactures a formula-style vehicle to compete annually at an international collegiate design and racing competition. In order to remain competitive, Bronco Racing required a lighter chassis for the 2021 vehicle. To achieve this, the full 2020 carbon fiber monocoque chassis system was redesigned to be lightweight while considering packaging constraints, the Formula SAE rules, and design parameters set by Bronco Racing. The monocoque geometry was modeled using SolidWorks and the carbon composite was simulated, tested, and verified using ANSYS and quasi-static load frame testing. The newly designed 2021 monocoque chassis …


Development Of A Finite Element Model Of The Stamping Process To Predict The Natural Frequencies Of Dimpled Beams, Varad Vasudeo Pendse Apr 2020

Development Of A Finite Element Model Of The Stamping Process To Predict The Natural Frequencies Of Dimpled Beams, Varad Vasudeo Pendse

Masters Theses

Creating dimples on beams has been proven to be an effective way of altering their vibrational behavior. The objective of this research is to simulate the process of stamping using the finite element (FE) method to create a model of a dimpled beam. This dimple has non-uniform thickness, so it shows close agreement with its real-life counterpart.

ANSYS® Parametric Design Language (APDL) is used to build a three-dimensional (3-D) finite element model and simulate the process of stamping used to create the dimple. The structural simulation is validated by calculating the thickness and width of the deformed geometry of the …


Evaporation Rate From Free Water Surface, Safa M. Aldarabseh Apr 2020

Evaporation Rate From Free Water Surface, Safa M. Aldarabseh

Dissertations

This work aims to perform an experiment in the laboratory and investigate the effect of the wave steepness, airflow velocity, air relative humidity, air temperature, and water surface temperature on the evaporation rate from still and wavy water surface. In this investigation, the experimental results are used to quantify an evaporation rate from a still and wavy water surface under different convection regimes that are free, mixed, and forced convection under turbulent airflow conditions. Empirical correlations are also derived using the experimental results based on modified Dalton’s law and Similarity method (analogy between mass and heat transfer equation). In this …


Comparison Of Optimal Energy Management Strategies Using Dynamic Programming, Model Predictive Control, And Constant Velocity Prediction, Amol Arvind Patil Apr 2020

Comparison Of Optimal Energy Management Strategies Using Dynamic Programming, Model Predictive Control, And Constant Velocity Prediction, Amol Arvind Patil

Masters Theses

Due to the recent advancements in autonomous vehicle technology, future vehicle velocity predictions are becoming more robust which allows fuel economy (FE) improvements in hybrid electric vehicles through optimal energy management strategies (EMS). A real-world highway drive cycle (DC) and a controls-oriented 2017 Toyota Prius Prime model are used to study potential FE improvements. We proposed three important metrics for comparison: (1) perfect full drive cycle prediction using dynamic programming, (2) 10-second prediction horizon model predictive control (MPC), and (3) 10-second constant velocity prediction. These different velocity predictions are put into an optimal EMS derivation algorithm to derive optimal engine …


Fatigue Damage Characterization By Surface Roughness And Instrumented Micro – Hardness Measurements, Suraj Sanjay Nikam Apr 2020

Fatigue Damage Characterization By Surface Roughness And Instrumented Micro – Hardness Measurements, Suraj Sanjay Nikam

Masters Theses

Fatigue is an essential consideration in the design of high performance, safety-critical structures, and components, as fatigue failure constitutes more than 70% of failures in dynamically loaded components. This research aims to shed light on the effect of surface roughness on the micro-hardness in metals through experimental techniques (Part 1), the correlation between the traditional fatigue testing and instrumented cyclic micro-hardness testing to determine the material properties modeled by Ramberg - Osgood relationship(Part 2), and the effect of the fatigue damage on micro-hardness and surface roughness (Part 3).

For this research, Al 7075 - T651 and Al 6061 - T651 …


Mechanical And Aerospace Engineering, 2019-2020, College Of Engineering And Applied Sciences Jan 2020

Mechanical And Aerospace Engineering, 2019-2020, College Of Engineering And Applied Sciences

Mechanical and Aerospace Engineering News

  • Letter from the Chair
  • The MAE Staff
  • Dr. Zachary Asher
  • Alumni Excellence Academy Inductees
  • From Sunway University to Success in America
  • Student Experience at the Oshkosh Airventure
  • Parker-Hannifin Donates New Hydraulic Trainers
  • Electric Ducted Fan Lab for the Aircraft Propulsion Course
  • MAE Faculty