Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

University of Tennessee, Knoxville

COMSOL

Discipline
Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Mechanical Engineering

Simulating High Flux Isotope Reactor Core Thermal-Hydraulics Via Interdimensional Model Coupling, Adam Ross Travis May 2014

Simulating High Flux Isotope Reactor Core Thermal-Hydraulics Via Interdimensional Model Coupling, Adam Ross Travis

Masters Theses

A coupled interdimensional model is presented for the simulation of the thermal-hydraulic characteristics of the High Flux Isotope Reactor core at Oak Ridge National Laboratory. The model consists of two domains—a solid involute fuel plate and the surrounding liquid coolant channel. The fuel plate is modeled explicitly in three-dimensions. The coolant channel is approximated as a two-dimensional slice oriented perpendicular to the fuel plate’s surface. The two dimensionally-inconsistent domains are linked to one another via interdimensional model coupling mechanisms. The coupled model is presented as a simplified alternative to a fully explicit, fully three-dimensional model. Involute geometries were ...


A Thermal Feasibility Study And Design Of An Air-Cooled Rectangular Wide Band Gap Inverter, Jacob Christopher Faulkner May 2011

A Thermal Feasibility Study And Design Of An Air-Cooled Rectangular Wide Band Gap Inverter, Jacob Christopher Faulkner

Masters Theses

All power electronics consist of solid state devices that generate heat. Managing the temperature of these devices is critical to their performance and reliability. Traditional methods involving liquid-cooling systems are expensive and require additional equipment for operation. Air-cooling systems are less expensive but are typically less effective at cooling the electronic devices. The cooling system that is used depends on the specific application.

Until recently, silicon based devices have been used for the solid-state devices in power electronics. Newly developed silicon-carbide based wide band gap devices operate at maximum temperatures higher than traditional silicon devices. Due to the permissible increase ...