Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

University of Tennessee, Knoxville

Computational Engineering

CFD

Articles 1 - 2 of 2

Full-Text Articles in Mechanical Engineering

Essentially Analytical Theory Closure For Space Filtered Thermal-Incompressible Navier-Stokes Partial Differential Equation System On Bounded Domains, Mikhail Alexandrovich Sekachev Aug 2013

Essentially Analytical Theory Closure For Space Filtered Thermal-Incompressible Navier-Stokes Partial Differential Equation System On Bounded Domains, Mikhail Alexandrovich Sekachev

Doctoral Dissertations

Numerical simulation of turbulent flows is identified as one of the grand challenges in high-performance computing. The straight forward approach of solving the Navier-Stokes (NS) equations is termed Direct Numerical Simulation (DNS). In DNS the majority of computational effort is spent on resolving the smallest scales of turbulence, which makes this approach impractical for most industrial applications even on present-day supercomputers. A more feasible approach termed Large Eddy Simulation (LES) has evolved over the last five decades to facilitate turbulent flow predictions for reasonable Reynolds (Re) numbers and domain sizes. LES theory uses the concept of convolution with a spatial …


Development And Verification Of A Navier-Stokes Solver With Vorticity Confinement Using Openfoam, Austin Barrett Kimbrell May 2012

Development And Verification Of A Navier-Stokes Solver With Vorticity Confinement Using Openfoam, Austin Barrett Kimbrell

Masters Theses

Vorticity Confinement (VC) is a numerical technique which enhances computation of fluid flows by acting as negative diffusion within the limit of vortical regions, preventing the inherent numerical dissipation present with conventional methods. VC shares similarities with large eddy simulation (LES), but its behavior is based on a stable negative dissipation of vortical structures controlled by the automatic balance between two parameters, μ [mu] and ε [epsilon].

In this thesis, three-dimensional, parallel-computing Navier-Stokes solvers with VC are developed using the OpenFOAM computational framework. OpenFOAM is an open-source collection of C++ libraries developed for computational fluid dynamics. Object-oriented programming concepts are …