Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 32

Full-Text Articles in Mechanical Engineering

Improving Predictive Capabilities Of Classical Cascade Theory For Nonproliferation Analysis, David Allen Vermillion May 2017

Improving Predictive Capabilities Of Classical Cascade Theory For Nonproliferation Analysis, David Allen Vermillion

Doctoral Dissertations

Uranium enrichment finds a direct and indispensable function in both peaceful and nonpeaceful nuclear applications. Today, over 99% of enriched uranium is produced by gas centrifuge technology. With the international dissemination of the Zippe archetypal design in 1960 followed by the widespread illicit centrifuge trafficking efforts of the A.Q. Khan network, traditional barriers to enrichment technologies are no longer as effective as they once were. Consequently, gas centrifuge technology is now regarded as a high-priority nuclear proliferation threat, and the international nonproliferation community seeks new avenues to effectively and efficiently respond to this emergent threat.

Effective response first requires ...


Computational Thermal-Hydraulics Modeling Of Twisted Tape Enabled High Heat Flux Components, Emily Buckman Clark May 2017

Computational Thermal-Hydraulics Modeling Of Twisted Tape Enabled High Heat Flux Components, Emily Buckman Clark

Doctoral Dissertations

The goal of this work was to perform a computational investigation into the thermalhydraulic performance of water-cooled, twisted tape enabled high heat flux components at fusion relevant conditions. Fusion energy is a promising option for future clean energy generation, but the community must overcome significant scientific and engineering challenges before meeting the goal of electricity generation. One such challenge is the high heat flux thermal management of components in fusion and plasma physics experiments. Plasma facing components in the magnetic confinement devices, such as ITER or W7-X, will be subjected to extreme heat loads on the order of 10-20 MW ...


Development, Analysis, And Optimization Of A Swirl-Promoting Mean Flow Solution For Solid Rocket Motors, Andrew Steven Fist Dec 2016

Development, Analysis, And Optimization Of A Swirl-Promoting Mean Flow Solution For Solid Rocket Motors, Andrew Steven Fist

Masters Theses

This work demonstrates and analyses a new flow candidate for describing the internal gaseous motion in simulated rocket motors. The fundamental features of this solution include the conservation of key system properties also incorporated in the classic Taylor-Culick (TC) system (i.e. inviscid, axisymmetric, steady and rotational properties), while allowing for the development of a swirling velocity component. The work compares the new solution to the development and formulation of the classic TC system, ultimately identifying that both the new and classic solutions are special cases of the Bragg-Hawthorne equation. Following this development, the text then explores the development of ...


Fundamental Studies Of Electrochemical Reactions And Microfluidics In Proton Exchange Membrane Electrolyzer Cells, Jingke Mo Dec 2016

Fundamental Studies Of Electrochemical Reactions And Microfluidics In Proton Exchange Membrane Electrolyzer Cells, Jingke Mo

Doctoral Dissertations

In electrochemical energy devices, including fuel cells, electrolyzers and batteries, the electrochemical reactions occur only on triple phase boundaries (TPBs). The boundaries provide the conductors for electros and protons, the catalysts for electrochemical reactions and the effective pathways for transport of reactants and products. The interfaces have a critical impact on the overall performance and cost of the devices in which they are incorporated, and therefore could be a key feature to optimize in order to turn a prototype into a commercially viable product. For electrolysis of water, proton exchange membrane electrolyzer cells (PEMECs) have several advantages compared to other ...


Turbine Engine Rotor Blade Damage Detection Through The Analysis Of Vibration Of Stationary Components, Jon Rylan Cox Dec 2016

Turbine Engine Rotor Blade Damage Detection Through The Analysis Of Vibration Of Stationary Components, Jon Rylan Cox

Doctoral Dissertations

Rotor blade fault detection and health monitoring systems are crucial for gas turbine engine testing and evaluation. The most commonly used techniques involve monitoring blades directly using strain gages, or drilling optical access holes in the engine casing for non-contact probes to monitor blade deflection and vibration. In this work, less intrusive, indirect techniques for rotor blade fault detection are developed, based on the hypotheses that the vibratory response of stationary components excited by the rotor blade dynamic pressure pulse can be used to detect the presence, location, and severity of rotor blade damage and changes in rotor blade natural ...


Dynamic Monitoring And Life Prediction Of Internal Strain-Gage Balances, David Leon Yoder Dec 2016

Dynamic Monitoring And Life Prediction Of Internal Strain-Gage Balances, David Leon Yoder

Masters Theses

Wind tunnel test customers continue to push the limits by producing air vehicle designs that produce high aerodynamic loads at the desired test conditions. These loads are a combination of steady aerodynamic, unsteady aerodynamic, and inertial forces. A methodology to monitor the health of a wind tunnel strain-gage balance has been developed. The objective of this methodology is to define the stress limits of the balance and monitor these limits so the balance can be safely tested without failure of the balance. A balance failure could result in costly damage to the wind tunnel model, support system, and the wind ...


Lattice Boltzmann Methods For Wind Energy Analysis, Stephen Lloyd Wood Aug 2016

Lattice Boltzmann Methods For Wind Energy Analysis, Stephen Lloyd Wood

Doctoral Dissertations

An estimate of the United States wind potential conducted in 2011 found that the energy available at an altitude of 80 meters is approximately triple the wind energy available 50 meters above ground. In 2012, 43% of all new electricity generation installed in the U.S. (13.1 GW) came from wind power. The majority of this power, 79%, comes from large utility scale turbines that are being manufactured at unprecedented sizes. Existing wind plants operate with a capacity factor of only approximately 30%. Measurements have shown that the turbulent wake of a turbine persists for many rotor diameters, inducing ...


Improved Modeling Of Atmospheric Entry For Meteors With Nose Radii Between 5cm And 10m, Jakob Dale Brisby May 2016

Improved Modeling Of Atmospheric Entry For Meteors With Nose Radii Between 5cm And 10m, Jakob Dale Brisby

Masters Theses

Atmospheric entry studies typically look closely at the peak heating rate that a body encounters during its trajectory. This is an extremely important phenomenon to study because it allows engineers to determine if a trajectory is possible with given materials and craft design specifications. It also allows designers to choose what type of method will be used for mitigating the enormous heat fluxes during entry. In general, it is accepted that during the super-sonic flight regime the body will continue to be heated and an ablative heat shield often is used to deal with these heating processes. The theory outlined ...


Optimization Of Titanium Liquid/Gas Diffusion Layers In Proton Exchange Membrane Electrolyzer Cells, Stuart Mccoy Steen Dec 2015

Optimization Of Titanium Liquid/Gas Diffusion Layers In Proton Exchange Membrane Electrolyzer Cells, Stuart Mccoy Steen

Masters Theses

Polymer electrolyte membrane electrolyzer cells (PEMECs), which are reverse PEM fuel cells (PEMFCs), are effective energy storage medium by producing hydrogen/oxygen from water using electricity from renewable energy sources. This is due in part because of its efficiency, high energy density, compact design, and large capacity. In a PEMEC, a liquid/gas diffusion layer (LGDL) is located between the catalyst layer and the current distributing flow field. The LGDL is expected to transport electrons, heat, and reactants/products to and from the catalyst layer with minimum voltage, current, thermal, interfacial, and fluidic losses. Carbon materials (carbon paper or carbon ...


Measurements Of Methyl Radicals And Temperatures By Using Coherent Microwave Rayleigh Scattering From Resonance Enhanced Multiphoton Ionization, Yue Wu Aug 2015

Measurements Of Methyl Radicals And Temperatures By Using Coherent Microwave Rayleigh Scattering From Resonance Enhanced Multiphoton Ionization, Yue Wu

Doctoral Dissertations

This thesis includes two main parts: (I) The CH3[methyl radical] detection in methane/air flames and (II) the rotational temperature measurement of O2[molecular oxygen] in a variety of environments by using coherent microwave Rayleigh scattering from resonance enhanced multiphoton ionization (Radar REMPI).

In first the part, from Chapter I to Chapter III, the methyl radical detection and quantitative measurements have been conducted in hydrocarbon flame with one-dimensional and two-dimensional spatial-resolved concentration distribution. Due to the proximity of the argon resonance state (4+1 REMPI by 332.5 nm) with the CH3 state (2+1 REMPI ...


Cfd Analysis Of Viscosity Effects On Turbine Flow Meter Performance And Calibration, Carl Tegtmeier May 2015

Cfd Analysis Of Viscosity Effects On Turbine Flow Meter Performance And Calibration, Carl Tegtmeier

Masters Theses

In this research turbine flow meters were studied, using computational fluid dynamics (CFD) modeling to the study effects of viscosity on the flow meters, across a wide range of operation, to improve our understanding and their performance. A three-dimensional computational model was created for a typical flow meter geometry. The work began with a steady state model to provide an acceptable initial condition for further simulations. These results were input into a transient model that has a rotating zone around the rotor to provide insight into the interaction between static and rotational structures. In order to automatically adjust the rotor ...


Design And Fabrication Of A Low-Cost Turbine Engine Component Testbed (Tect), Joshua A. Hartman Aug 2014

Design And Fabrication Of A Low-Cost Turbine Engine Component Testbed (Tect), Joshua A. Hartman

Masters Theses

With gas turbine engine testing becoming very expensive because of the increasing complexity involved with the engine, engine subsystems, and test support systems, a low-cost Turbine Engine Component Testbed (TECT) is proposed. This engine build is given the designation J1-H-02. In the present study, a small augmented gas turbine engine (GTE) is constructed. The TECT engine is built with modularity as a key design consideration to allow for flame-tube patterns and augmentor sections to be changed quickly for combustion experiments that have gained impetus due to combustion anomalies/instabilities inherent with future military engine augmentors. This testbed allows for an ...


Neutron Imaging Of Lithium (Li) Coolants Inside High Temperature Niobium (Nb) Heat Pipes, Brad Harrison Hight May 2014

Neutron Imaging Of Lithium (Li) Coolants Inside High Temperature Niobium (Nb) Heat Pipes, Brad Harrison Hight

Masters Theses

Lithium (Li) behavior inside a high temperature Nb-Li leading edge heat pipe was successfully imaged under induction heating operation via neutron imaging. Startup and cool-down operations gave visual confirmation of bulk Li movement using both gravity assisted and inverted operating orientations. The pipe was imaged during an operation cycle from ambient conditions, heated to a steady state temperature of 908.8 0C, and allowed to cool below 200°C. The experiment was performed at the National Institute of Standards and Technology (NIST) in Gaithersburg, Maryland, and at the Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee.

Tomographic images ...


Plasmonics Resonance Enhanced Active Photothermal Effects In Aluminum Nanoenergetics For Propulsion Applications, Jacques Abboud Aug 2013

Plasmonics Resonance Enhanced Active Photothermal Effects In Aluminum Nanoenergetics For Propulsion Applications, Jacques Abboud

Doctoral Dissertations

In this dissertation, aluminum nanoparticles (Al NPs) are shown capable to on-demand enhance and control the local photothermal energy deposition, both spatially and temporally, via active photothermal effects initiated by the localized surface plasmon resonance (LSPR) phenomenon, and amplified by the Al exothermal oxidation reactions. Experiments in dry and wet environments along with computational modeling of the photothermal process are very desirable for gaining fundamental understanding, ignition optimization and parameter exploration.

Combined phenomena of motion and ignition of Al NPs are explored first in this study. Both resulting from exposing a pile of the nanoenergetics in hand to a single ...


Essentially Analytical Theory Closure For Space Filtered Thermal-Incompressible Navier-Stokes Partial Differential Equation System On Bounded Domains, Mikhail Alexandrovich Sekachev Aug 2013

Essentially Analytical Theory Closure For Space Filtered Thermal-Incompressible Navier-Stokes Partial Differential Equation System On Bounded Domains, Mikhail Alexandrovich Sekachev

Doctoral Dissertations

Numerical simulation of turbulent flows is identified as one of the grand challenges in high-performance computing. The straight forward approach of solving the Navier-Stokes (NS) equations is termed Direct Numerical Simulation (DNS). In DNS the majority of computational effort is spent on resolving the smallest scales of turbulence, which makes this approach impractical for most industrial applications even on present-day supercomputers. A more feasible approach termed Large Eddy Simulation (LES) has evolved over the last five decades to facilitate turbulent flow predictions for reasonable Reynolds (Re) numbers and domain sizes. LES theory uses the concept of convolution with a spatial ...


Fully Coupled Fluid And Electrodynamic Modeling Of Plasmas: A Two-Fluid Isomorphism And A Strong Conservative Flux-Coupled Finite Volume Framework, Richard Joel Thompson Aug 2013

Fully Coupled Fluid And Electrodynamic Modeling Of Plasmas: A Two-Fluid Isomorphism And A Strong Conservative Flux-Coupled Finite Volume Framework, Richard Joel Thompson

Doctoral Dissertations

Ideal and resistive magnetohydrodynamics (MHD) have long served as the incumbent framework for modeling plasmas of engineering interest. However, new applications, such as hypersonic flight and propulsion, plasma propulsion, plasma instability in engineering devices, charge separation effects and electromagnetic wave interaction effects may demand a higher-fidelity physical model. For these cases, the two-fluid plasma model or its limiting case of a single bulk fluid, which results in a single-fluid coupled system of the Navier-Stokes and Maxwell equations, is necessary and permits a deeper physical study than the MHD framework. At present, major challenges are imposed on solving these physical models ...


Multidimensional Compressible Framework For Modeling Biglobal Stability In Rocket Motors, Michel Henry Akiki Aug 2013

Multidimensional Compressible Framework For Modeling Biglobal Stability In Rocket Motors, Michel Henry Akiki

Doctoral Dissertations

Rocket motor stability analysis has historically been focused on two fundamental theories: the acoustic and the hydrodynamic. While the acoustic part examines the system at resonant states, the hydrodynamic component focuses on the fluid-wall interactions and the vortex shedding mechanisms which are responsible for exciting the system. Traditionally, the two concepts are studied independently and their results are then superposed for a more complete solution. In this study, we analyze the problem from a hydrodynamic standpoint and extend it to include compressibility. This is realized by reducing the linearized Navier-Stokes and energy equations to their biglobal form assuming a two-dimensional ...


Heat Transfer Analysis Via Rate Based Sensors, Jake Erik Plewa Dec 2012

Heat Transfer Analysis Via Rate Based Sensors, Jake Erik Plewa

Masters Theses

This work presents an integrated rate-based sensor and method for resolving the surface heat flux of a fundamental inverse heat conduction problem without numerical regularization or differentiation in a semi-infinite geometry that additionally accounts for thermocouple delay due to its intrinsic time constant. The sensor uses well-designed analog filters to directly regularize raw voltage data to eliminate the need for numerical regularization methods. The sensor can also be used in a series of well-designed voltage-rate interfaces that directly measure the voltages from in-depth thermocouples, which are used in conjunction with the thermocouple calibration curve to provide higher-time derivatives of the ...


Parametric Instability Investigation And Stability Based Design For Transmission Systems Containing Face-Gear Drives, Meng Peng Aug 2012

Parametric Instability Investigation And Stability Based Design For Transmission Systems Containing Face-Gear Drives, Meng Peng

Doctoral Dissertations

The objective of this dissertation is to provide a novel design methodology for face-gear transmissions based on system stability - a dynamics viewpoint. The structural dynamics models of transverse and torsional vibrations are developed for face-gear drives with spur pinions to investigate the parametric instability behavior in great depth. The unique face-gear meshing kinematics and the fluctuation of mesh stiffness due to a nonunity contact-ratio are considered in these models. Since the system is periodically timevarying, Floquet theory is utilized to solve the Mathieu-Hill system equations and determine the system stability numerically. To avoid complex numerical computations, Treglod’s approximation is ...


Droplet Characterization In The Wake Of Steam Turbine Cascades, Adam Charles Plondke May 2012

Droplet Characterization In The Wake Of Steam Turbine Cascades, Adam Charles Plondke

Masters Theses

In low-pressure steam turbines, water droplet formation on the surfaces of stationary stator blades can lead to erosion on downstream turbine blades and other equipment. One property that affects the size of the droplets that are formed is the adhesive forces between the water and the surface of the stator blade. The adhesive forces hold the droplets to the surface where they may combine, forming increasingly larger droplets. Eventually, the aerodynamic forces will tear the droplets off the surface, carrying them downstream.

To study the effect of stator surface properties on the droplet size distribution, four cascades of stator blades ...


Development And Verification Of A Navier-Stokes Solver With Vorticity Confinement Using Openfoam, Austin Barrett Kimbrell May 2012

Development And Verification Of A Navier-Stokes Solver With Vorticity Confinement Using Openfoam, Austin Barrett Kimbrell

Masters Theses

Vorticity Confinement (VC) is a numerical technique which enhances computation of fluid flows by acting as negative diffusion within the limit of vortical regions, preventing the inherent numerical dissipation present with conventional methods. VC shares similarities with large eddy simulation (LES), but its behavior is based on a stable negative dissipation of vortical structures controlled by the automatic balance between two parameters, μ [mu] and ε [epsilon].

In this thesis, three-dimensional, parallel-computing Navier-Stokes solvers with VC are developed using the OpenFOAM computational framework. OpenFOAM is an open-source collection of C++ libraries developed for computational fluid dynamics. Object-oriented programming concepts are ...


A Method For Performance Analysis Of A Ramjet Engine In A Free-Jet Test Facility And Analysis Of Performance Uncertainty Contributors, Kevin Raymond Holst May 2012

A Method For Performance Analysis Of A Ramjet Engine In A Free-Jet Test Facility And Analysis Of Performance Uncertainty Contributors, Kevin Raymond Holst

Masters Theses

Ramjet and scramjet engines are being developed to provide a more fuel efficient means of propulsion at high Mach numbers. Part of the development of these engines involves test and evaluation of an engine in ground facilities as well as in flight. Ground facilities, like Arnold Engineering Development Center (AEDC) and those at engine manufacturers like General Electric (GE) and Pratt & Whitney (PW), have decades of experience testing traditional turbine engines and much less experience testing full scale ramjet engines.

Testing a supersonic engine model in a free-jet mode presents a host of challenges not experienced during traditional direct connect ...


The Biglobal Instability Of The Bidirectional Vortex, Joshua Will Batterson Aug 2011

The Biglobal Instability Of The Bidirectional Vortex, Joshua Will Batterson

Doctoral Dissertations

State of the art research in hydrodynamic stability analysis has moved from classic one-dimensional methods such as the local nonparallel approach and the parabolized stability equations to two-dimensional, biglobal, methods. The paradigm shift toward two dimensional techniques with the ability to accommodate fully three-dimensional base flows is a necessary step toward modeling complex, multidimensional flowfields in modern propulsive applications. Here, we employ a two-dimensional spatial waveform with sinusoidal temporal dependence to reduce the three-dimensional linearized Navier-Stokes equations to their biglobal form. Addressing hydrodynamic stability in this way circumvents the restrictive parallel-flow assumption and admits boundary conditions in the streamwise direction ...


Continuously Variable Rotorcraft Propulsion System: Modelling And Simulation, Naveen Kumar Vallabhaneni Aug 2011

Continuously Variable Rotorcraft Propulsion System: Modelling And Simulation, Naveen Kumar Vallabhaneni

Masters Theses

This study explores the variable speed operation and shift response of a prototype of a two speed single path CVT rotorcraft driveline system. Here a Comprehensive Variable Speed Rotorcraft Propulsion system Modeling (CVSRPM) tool is developed and utilized to simulate the drive system dynamics in steady forward speed condition. This investigation attempts to build upon previous variable speed rotorcraft propulsion studies by:

1) Including fully nonlinear first principles based transient gas-turbine engine model

2) Including shaft flexibility

3) Incorporating a basic flight dynamics model to account for interactions with the flight control system.

Through exploring the interactions between the various ...


Effects Of Supercooled Water Ingestion On Engine Performance, Rick Hutchings Aug 2011

Effects Of Supercooled Water Ingestion On Engine Performance, Rick Hutchings

Masters Theses

An aircraft will encounter freezing rain, snow, and ice during ground operation and flight. In cold conditions, ice may form on th einlet and internal stators and rotors of the gas turbine engine. When ice accumulates on blades (and/or stators), the aerodynamic characteristics of the blades change due to the altered size, shape, and roughness. This change causes the blade to no longer operate at its design point and decreases compressor performance. Therefore, characterization of the aerodynamic performance is required to define the associated losses due to the effects of supercooled liquid water ingestion. This characterization can be accomplished ...


Effect Of Unsteady Combustion On The Stability Of Rocket Engines, Tina Morina Rice May 2011

Effect Of Unsteady Combustion On The Stability Of Rocket Engines, Tina Morina Rice

Doctoral Dissertations

Combustion instability is a problem that has plagued the development of rocket-propelled devices since their conception. It is characterized by the occurrence of high-frequency nonlinear gas oscillations inside the combustion chamber. This phenomenon degrades system performance and can result in damage to both structure and instrumentation.

The goal of this dissertation is to clarify the role of unsteady combustion in the combustor instability problem by providing the first quantified estimates of its effect upon the stability of liquid rocket engines. The combination of this research with a new system energy balance method, accounting for all dynamic interactions within a system ...


Modeling And Analysis Of Turbojet Compressor Inlet Temperature Measurement System Performance, Brian A Binkley May 2011

Modeling And Analysis Of Turbojet Compressor Inlet Temperature Measurement System Performance, Brian A Binkley

Masters Theses

Accurate measurement of turbine engine compressor inlet total temperature is paramount for controlling engine speed and pressure ratio. Various methods exist for measuring compressor inlet total temperature on turbojet engines with hydromechanical control. One method involves the use of an ejector-diffuser system (eductor) to pull air from the engine inlet in order to measure the incoming total temperature. Analysis of historical test data has revealed that the inlet temperature measurement can be biased at certain flight conditions causing engine mis-scheduling and off-nominal engine operation. This bias is characterized primarily by adverse heat transfer effects and secondly by poor flow quality ...


Cross-Flow, Staggered-Tube Heat Exchanger Analysis For High Enthalpy Flows, Gary L. Hammock May 2011

Cross-Flow, Staggered-Tube Heat Exchanger Analysis For High Enthalpy Flows, Gary L. Hammock

Masters Theses

Cross flow heat exchangers are a fairly common apparatus employed throughout many industrial processes. For these types of systems, correlations have been extensively developed. However, there have been no correlations done for very high enthalpy flows as produced by Arnold Engineering Development Center’s (AEDC) H2 facility. The H2 facility uses a direct current electric arc to heat air which is then expanded through a converging-diverging nozzle to impart a supersonic velocity to the air. This high enthalpy, high temperature air must be cooled downstream by the use of a cross flow heat exchanger.

It is of interest to evaluate ...


Capstone Design: Energy Efficient Windows Triple Pane Window Analysis, Michael S. Kee, Drew Ryan Hughes, Amanda Michele Lee, Michael Mcmillan, Jake Eric Plewa May 2010

Capstone Design: Energy Efficient Windows Triple Pane Window Analysis, Michael S. Kee, Drew Ryan Hughes, Amanda Michele Lee, Michael Mcmillan, Jake Eric Plewa

Chancellor’s Honors Program Projects

No abstract provided.


Computational Investigations Of Characteristic Performance Improvements For Subkilogram Laser Micropropulsion, Richard Joel Thompson Dec 2009

Computational Investigations Of Characteristic Performance Improvements For Subkilogram Laser Micropropulsion, Richard Joel Thompson

Masters Theses

Experimental investigations have evaluated the feasibility of using laser-driven plasma microthrusters for small-thrust, high-specific-impulse space maneuvers, particularly for micro- and nanosatellite missions. Recent work made use of the Mach2 hydromagnetics code for the construction of an adequate computational model of the micro-thruster opera- tion. This thesis expounds on this previous work by extending the computational modeling capabilities, allowing for the determination of plasma plume properties and characteristic performance assessment of the microthruster; this allows for further computational investi- gation of the performance improvements achieved by new design considerations. Two par- ticular design changes are implemented and measured: (i) the simulation ...