Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

University of South Florida

Large Deflections

Discipline
Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Mechanical Engineering

A Planar Pseudo-Rigid-Body Model For Cantilevers Experiencing Combined Endpoint Forces And Uniformly Distributed Loads Acting In Parallel, Philip James Logan Jan 2015

A Planar Pseudo-Rigid-Body Model For Cantilevers Experiencing Combined Endpoint Forces And Uniformly Distributed Loads Acting In Parallel, Philip James Logan

Graduate Theses and Dissertations

This dissertation describes the development and effectiveness of a mathematical model used to predict the behavior of cantilever beams whose loading conditions include parallel combinations of evenly distributed loads and endpoint forces. The large deflection of cantilever beams has been widely studied. A number of models and mathematical techniques have been utilized in predicting the endpoint path coordinates and load-deflection relationships of such beams. The Pseudo-Rigid-Body Model (PRBM) is one such method which replaces the elastic beam with rigid links of a parameterized pivot location and torsional spring stiffness. In this paper, the PRBM method is extended to include cases ...


A 3-D Pseudo-Rigid-Body Model For Rectangular Cantilever Beams With An Arbitrary Force End-Load, Jairo Renato Chimento Apr 2014

A 3-D Pseudo-Rigid-Body Model For Rectangular Cantilever Beams With An Arbitrary Force End-Load, Jairo Renato Chimento

Graduate Theses and Dissertations

This dissertation introduces a novel three-dimensional pseudo-rigid-body model (3-D PRBM) for straight cantilever beams with rectangular cross sections. The model is capable of capturing the behavior of the neutral axis of a beam loaded with an arbitrary force end-load. Numerical integration of a system of differential equations yields approximate displacement and orientation of the beam's neutral axis at the free end, and curvatures of the neutral axis at the fixed end. This data was used to develop the 3-D PRBM which consists of two torsional springs connecting two rigid links for a total of 2 degrees of freedom (DOF ...