Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 13 of 13

Full-Text Articles in Mechanical Engineering

La0.7Sr0.3Fe0.7Ga0.3O3-Δ As Electrode Material For A Symmetrical Solid Oxide Fuel Cell, Zhibin Yang, Yu Chen, Chao Jin, Guoliang Xiao, Minfang Han, Fanglin Chen Jan 2015

La0.7Sr0.3Fe0.7Ga0.3O3-Δ As Electrode Material For A Symmetrical Solid Oxide Fuel Cell, Zhibin Yang, Yu Chen, Chao Jin, Guoliang Xiao, Minfang Han, Fanglin Chen

Faculty Publications

In this research, La0.7Sr0.3Fe0.7Ga0.3O3−δ (LSFG) perovskite oxide was successfully prepared using a microwave-assisted combustion method, and employed as both anode and cathode in symmetrical solid oxide fuel cells. A maximum power density of 489 mW cm−2 was achieved at 800 °C with wet H2 as the fuel and ambient air as the oxidant in a single cell with the configuration LSFG|La0.8Sr0.2Ga0.83Mg0.17O3−δ|LSFG. Furthermore, the cells demonstrated good stability in ...


Fabrication And Characterization Of Novel Electrodes For Solid Oxide Fuel Cell For Efficient Energy Conversion, Yu Chen Dec 2014

Fabrication And Characterization Of Novel Electrodes For Solid Oxide Fuel Cell For Efficient Energy Conversion, Yu Chen

Theses and Dissertations

Solid oxide fuel cells (SOFCs) have been considered as one of the most promising technologies for future energy conversion since they can in principle be operated with fuels ranging from H2 to any hydrocarbon fuel. However, the system cost and coking (when using hydrocarbon as fuel) issues for the state-of-art electrode materials/designs often limit their further application. The objective of this Ph.D dissertation is aiming at overcoming these problems and accelerating SOFC commercialization. One approach to cost reduction is lowering the SOFC operating temperature to below 800 or even 600 oC, so that inexpensive materials can be used ...


Material Synthesis And Fabrication Method Development For Intermediate Temperature Solid Oxide Fuel Cells, Hanping Ding Jan 2014

Material Synthesis And Fabrication Method Development For Intermediate Temperature Solid Oxide Fuel Cells, Hanping Ding

Theses and Dissertations

Solid oxide fuel cells (SOFCs) are operated in high temperature conditions (750-1000 oC). The high operating temperature in turn may lead to very complicated material degradation issues, significantly increasing the cost and reducing the durability of SOFC material systems. In order to widen material selections, reduce cost, and increase durability of SOFCs, there is a growing interest to develop intermediate temperature SOFCs (500-750 oC). However, lowering operating temperature will cause substantial increases of ohmic resistance of electrolyte and polarization resistance of electrodes. This dissertation aimed at developing high-performance intermediate-temperature SOFCs through the employment of a series of layered perovskite oxides ...


A Platinum Nanowire Network As A Highly Effective Current Collector For Intermediate Temperature Solid Oxide Fuel Cells, Hanping Ding, Xingjian Xue Jan 2014

A Platinum Nanowire Network As A Highly Effective Current Collector For Intermediate Temperature Solid Oxide Fuel Cells, Hanping Ding, Xingjian Xue

Faculty Publications

We report the fabrication and evaluation of a platinum nanowire network as a highly efficient current collector for solid oxide fuel cells (SOFCs). The ink of carbon-black supported platinum nanoparticles was sprayed onto the cathode. After firing, the carbon black was oxidized and disappeared as carbon dioxide gas while the platinum nanoparticles connect with one another, forming a tree-branch-like nanowire network. The diameters of the nanowires range from 100 nm to 400 nm. Compared to a conventional platinum paste current collector, the polarization resistance of the PrBaCo2O5+δ (PBCO) cathode with a nanowire current collector was reduced ...


Micro Modeling Study Of Cathode/Electrolyte Interfacial Stresses For Solid Oxide Fuel Cells, Xinfang Jin, Xingjian Xue May 2013

Micro Modeling Study Of Cathode/Electrolyte Interfacial Stresses For Solid Oxide Fuel Cells, Xinfang Jin, Xingjian Xue

Faculty Publications

Delamination of the cathode/electrolyte interface is an important degradation phenomenon in solid oxide fuel cells (SOFCs). While the thermal stress has been widely recognized as one of the major reasons for such delamination failures, the role of chemical stress does not receive too much attention. In this paper, a micro-model is developed to study the cathode/electrolyte interfacial stresses, coupling oxygen ion transport process with structural mechanics. Results indicate that the distributions of chemical stress are very complicated at the cathode/electrolyte interface and show different patterns from those of thermal stress. The maximum principal stresses take place at ...


High Performance Low Temperature Solid Oxide Fuel Cells With Novel Electrode Architecture, Yu Chen, Qian Liu, Zhibin Yang, Fanglin Chen, Minfang Han Dec 2012

High Performance Low Temperature Solid Oxide Fuel Cells With Novel Electrode Architecture, Yu Chen, Qian Liu, Zhibin Yang, Fanglin Chen, Minfang Han

Faculty Publications

In this study, we have fabricated high performance low temperature solid oxide fuel cells (LT-SOFCs) with both acicular anodes and cathodes with thin Gd-doped ceria (GDC) electrolyte film. The acicular Ni-Gd0.1Ce0.9O2−δ (Ni-GDC) anode was prepared using freeze drying tape casting, while the hierarchically porous cathode with nano-size Sm0.5Sr0.5CoO3 (SSC) particles covering an acicular GDC skeleton was prepared by a combination of freeze drying tape casting and self-rising approaches. The acicular electrodes with 5–200 μm pores/channels enhance mass transport, while SSC particles of about ...


Sr2Fe1.5Mo0.5O6-Δ – Sm0.2Ce0.8O1.9 Composite Anodes For Intermediate-Temperature Solid Oxide Fuel Cells, Beibei He, Ling Zhao, Shuxiang Song, Tong Liu, Fanglin Chen, Changrong Xia Mar 2012

Sr2Fe1.5Mo0.5O6-Δ – Sm0.2Ce0.8O1.9 Composite Anodes For Intermediate-Temperature Solid Oxide Fuel Cells, Beibei He, Ling Zhao, Shuxiang Song, Tong Liu, Fanglin Chen, Changrong Xia

Faculty Publications

Sr2Fe1.5Mo0.5O6−δ (SFM) perovskite is carefully investigated as an anode material for solid oxide fuel cells with LaGaO3-based electrolytes. Its electronic conductivity under anodic atmosphere is measured with four-probe method while its ionic conductivity is determined with oxygen permeation measurement. Samaria doped ceria (SDC) is incorporated into SFM electrode to improve the anodic performance. A strong relation is observed between SDC addition and polarization losses, suggesting that the internal SFM-SDC contacts are active for H2 oxidation. The best electrode performance is achieved for the composite with 30 wt ...


Characteristics Of The Hydrogen Electrode In High Temperature Steam Electrolysis Process, Chao Jin, Chenghao Yang, Fanglin Chen Aug 2011

Characteristics Of The Hydrogen Electrode In High Temperature Steam Electrolysis Process, Chao Jin, Chenghao Yang, Fanglin Chen

Faculty Publications

YSZ-electrolyte supported solid oxide electrolyzer cells (SOECs) using LSM-YSZ oxygen electrode but with three types of hydrogen electrode, Ni–SDC, Ni–YSZ and LSCM–YSZ have been fabricated and characterized under different steam contents in the feeding gas at 850°C. Electrochemical impedance spectra results show that cell resistances increase with the increase in steam concentrations under both open circuit voltage and electrolysis conditions, suggesting that electrolysis reaction becomes more difficult in high steam content. Pt reference electrode was applied to evaluate the contributions of the hydrogen electrode and oxygen electrode in the electrolysis process. Electrochemical impedance spectra and over ...


Sr2Fe1.5Mo0.5O6 As Cathodes For Intermediate-Temperature Solid Oxide Fuel Cells With La0.8Sr0.2Ga0.87Mg0.13O3 Electrolyte, Guoliang Xiao, Qiang Liu, Fei Zhao, Lei Zhang, Changrong Xia, Fanglin Chen Mar 2011

Sr2Fe1.5Mo0.5O6 As Cathodes For Intermediate-Temperature Solid Oxide Fuel Cells With La0.8Sr0.2Ga0.87Mg0.13O3 Electrolyte, Guoliang Xiao, Qiang Liu, Fei Zhao, Lei Zhang, Changrong Xia, Fanglin Chen

Faculty Publications

The performance of Sr2Fe1.5Mo0.5O6 (SFMO) as a cathode material has been investigated in this study. The oxygen ionic conductivityof SFMO reaches 0.13 S cm-1 at 800°C in air. The chemical diffusion coefficient (Dchem) and surface exchange constant (kex) of SFMO at 750°C are 5.0 x 10-6 cm2 s-1 and 2.8 x 10-5 cm s-1, respectively, suggesting that SFMO may have good electrochemicalactivity for oxygen reduction. SFMO shows a thermal expansion coefficient (TEC) of 14.5 x 10-6 ...


Optimization Design Of Electrodes For Anode-Supported Solid Oxide Fuel Cells Via Genetic Algorithm, Junxiang Shi, Xingjian Xue Dec 2010

Optimization Design Of Electrodes For Anode-Supported Solid Oxide Fuel Cells Via Genetic Algorithm, Junxiang Shi, Xingjian Xue

Faculty Publications

Porous electrode is the critical component of solid-oxide fuel cells (SOFCs) and provides a functional material backbone for multi-physicochemical processes. Model based electrode designs could significantly improve SOFC performance. This task is usually performed via parameter studies for simple case and assumed property distributions for graded electrodes. When nonlinearly coupled multiparameters of electrodes are considered, it could be very difficult for the model based parameter study method to effectively and systematically search the design space. In this research, the optimization approach with a genetic algorithm is demonstrated for this purpose. An anode-supported proton conducting SOFC integrated with a fuel supply ...


La0.85Sr0.15Mno3− Infiltrated Y0.5Bi1.5O3 Cathodes For Intermediate-Temperature Solid Oxide Fuel Cells, Jiang Zhiyi, Changrong Xia, Fei Zhao, Fanglin Chen Mar 2009

La0.85Sr0.15Mno3− Infiltrated Y0.5Bi1.5O3 Cathodes For Intermediate-Temperature Solid Oxide Fuel Cells, Jiang Zhiyi, Changrong Xia, Fei Zhao, Fanglin Chen

Faculty Publications

Porous yttria-stabilized bismuth oxides (YSB) were investigated as the backbones for La0.85Sr0.15MnO3−(LSM) infiltrated cathodes in intermediate-temperature solid oxide fuel cells. The cathodes were evaluated using anode-supported single cells with scandia-stabilized zirconia as the electrolytes. With humidified H2 as the fuel, the cell showed peak power density of 0.33, 0.52, and 0.74 W cm−2 at 650, 700, and 750°C, respectively. At 650°C, the cell polarization resistance was only 1.38 Ω cm2, <50% of the lowest value previously reported, indicating that YSB is a promising backbone for the LSM infiltrated cathode.


Reduced-Temperature Solid Oxide Fuel Cells Fabricated By Screen Printing, Changrong Xia, Fanglin Chen, Meilin Liu Mar 2001

Reduced-Temperature Solid Oxide Fuel Cells Fabricated By Screen Printing, Changrong Xia, Fanglin Chen, Meilin Liu

Faculty Publications

Electrolyte films of samaria-doped ceria (SDC, Sm0.2Ce0.8O1.9) are fabricated onto porous NiO-SDC substrates by a screen printing technique. A cathode layer, consisting of Sm0.5Sr0.5CoO3 and 10 wt % SDC, is subsequently screen printed on the electrolyte to form a single cell, which is tested at temperatures from 400 to 600°C. When humidified (3% H2O) hydrogen or methane is used as fuel and stationary air as oxidant, the maximum power densities are 188 (or 78) and 397 (or 304) mW/cm2 at 500 ...


Preparation Of Ordered Macroporous Sr0.5sm0.5coo3 As Cathode For Solid Oxide Fuel Cells, Fanglin Chen, Changrong Xia, Meilin Liu Jan 2001

Preparation Of Ordered Macroporous Sr0.5sm0.5coo3 As Cathode For Solid Oxide Fuel Cells, Fanglin Chen, Changrong Xia, Meilin Liu

Faculty Publications

Ordered macroporous Sr0.5Sm0.5CoO3 structrures with an average pore size of 140 nm have been prepared using closepacked arrangement of monodispersed polystyrene spheres as templates. A fuel cell using ordered macroporous Sr0.5Sm0.5CoO3 as the cathode, gadolinia-doped ceria (GDC) film as the electrolyte, and GDC–NiO as the anode generated maximum power densities of 150, 196 and 267 mW/cm2 at 500, 550 and 600 °C, respectively.