Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

University of South Carolina

Piezoelectric wafer active sensors

Faculty Publications

Discipline
Publication Year

Articles 1 - 7 of 7

Full-Text Articles in Mechanical Engineering

Vibration-Based In-Situ Detection And Quantification Of Delamination In Composite Plates, Hanfei Mei, Asaad Migot, Mohammad Faisal Haider, Roshan Joseph, Md Yeasin Bhuiyan, Victor Giurgiutiu Apr 2019

Vibration-Based In-Situ Detection And Quantification Of Delamination In Composite Plates, Hanfei Mei, Asaad Migot, Mohammad Faisal Haider, Roshan Joseph, Md Yeasin Bhuiyan, Victor Giurgiutiu

Faculty Publications

This paper presents a new methodology for detecting and quantifying delamination in composite plates based on the high-frequency local vibration under the excitation of piezoelectric wafer active sensors. Finite-element-method-based numerical simulations and experimental measurements were performed to quantify the size, shape, and depth of the delaminations. Two composite plates with purpose-built delaminations of different sizes and depths were analyzed. In the experiments, ultrasonic C-scan was applied to visualize the simulated delaminations. In this methodology, piezoelectric wafer active sensors were used for the high-frequency excitation with a linear sine wave chirp from 1 to 500 kHz and a scanning laser Doppler …


Vibration-Based In-Situ Detection And Quantification Of Delamination In Composite Plates, Hanfei Mei, Asaad Migot, Mohammad Faisal Haider, Roshan Joseph, Md Yeasin Bhuiyan, Victor Giurgiutiu Apr 2019

Vibration-Based In-Situ Detection And Quantification Of Delamination In Composite Plates, Hanfei Mei, Asaad Migot, Mohammad Faisal Haider, Roshan Joseph, Md Yeasin Bhuiyan, Victor Giurgiutiu

Faculty Publications

This paper presents a new methodology for detecting and quantifying delamination in composite plates based on the high-frequency local vibration under the excitation of piezoelectric wafer active sensors. Finite-element-method-based numerical simulations and experimental measurements were performed to quantify the size, shape, and depth of the delaminations. Two composite plates with purpose-built delaminations of different sizes and depths were analyzed. In the experiments, ultrasonic C-scan was applied to visualize the simulated delaminations. In this methodology, piezoelectric wafer active sensors were used for the high-frequency excitation with a linear sine wave chirp from 1 to 500 kHz and a scanning laser Doppler …


Recent Advances In Piezoelectric Wafer Active Sensors For Structural Health Monitoring Applications, Hanfei Mei, Mohammad Faisal Haider, Roshan Prakash Joseph, Asaad Migot, Victor Giurgiutiu Jan 2019

Recent Advances In Piezoelectric Wafer Active Sensors For Structural Health Monitoring Applications, Hanfei Mei, Mohammad Faisal Haider, Roshan Prakash Joseph, Asaad Migot, Victor Giurgiutiu

Faculty Publications

In this paper, some recent piezoelectric wafer active sensors (PWAS) progress achieved in our laboratory for active materials and smart structures (LAMSS) at the University of South Carolina: http: //www.me.sc.edu/research/lamss/ group is presented. First, the characterization of the PWAS materials shows that no significant change in the microstructure after exposure to high temperature and nuclear radiation, and the PWAS transducer can be used in harsh environments for structural health monitoring (SHM) applications. Next, PWAS active sensing of various damage types in aluminum and composite structures are explored. PWAS transducers can successfully detect the simulated crack and corrosion damage in aluminum …


Recent Advances In Piezoelectric Wafer Active Sensors For Structural Health Monitoring Applications, Hanfei Mei, Mohammad Faisal Haider, Roshan Joseph, Asaad Migot, Victor Giurgiutiu Jan 2019

Recent Advances In Piezoelectric Wafer Active Sensors For Structural Health Monitoring Applications, Hanfei Mei, Mohammad Faisal Haider, Roshan Joseph, Asaad Migot, Victor Giurgiutiu

Faculty Publications

In this paper, some recent piezoelectric wafer active sensors (PWAS) progress achieved in our laboratory for active materials and smart structures (LAMSS) at the University of South Carolina: http: //www.me.sc.edu/research/lamss/ group is presented. First, the characterization of the PWAS materials shows that no significant change in the microstructure after exposure to high temperature and nuclear radiation, and the PWAS transducer can be used in harsh environments for structural health monitoring (SHM) applications. Next, PWAS active sensing of various damage types in aluminum and composite structures are explored. PWAS transducers can successfully detect the simulated crack and corrosion damage in aluminum …


Piezoelectric Wafer Active Sensors In Lamb Wave-Based Structural Health Monitoring, Lingyu Yu, Victor Giurgiutiu Jan 2012

Piezoelectric Wafer Active Sensors In Lamb Wave-Based Structural Health Monitoring, Lingyu Yu, Victor Giurgiutiu

Faculty Publications

Recent advancements in sensors and information technologies have resulted in new methods for structural health monitoring (SHM) of the performance and deterioration of structures. The enabling element is the piezoelectric wafer active sensor (PWAS). This paper presents an introduction to PWAS transducers and their applications in Lamb wave-based SHM. We begin by reviewing the fundamentals of piezoelectric intelligent materials. Then, the mechanism of using PWAS transducers as Lamb wave transmitters and receivers is presented. PWAS interact with the host structure through the shear-lag model. Lamb wave mode tuning can be achieved by judicious combination of PWAS dimensions, frequency value, and …


Structural Health Monitoring With Piezoelectric Wafer Active Sensors—Predictive Modeling And Simulation, Victor Giurgiutiu Jan 2010

Structural Health Monitoring With Piezoelectric Wafer Active Sensors—Predictive Modeling And Simulation, Victor Giurgiutiu

Faculty Publications

This paper starts a review of the state of the art in structural health monitoring with piezoelectric wafer active sensors and follows with highlighting the limitations of the current approaches which are predominantly experimental. Subsequently, the paper examines the needs for developing a predictive modeling methodology that would allow to perform extensive parameter studies to determine the sensing method’s sensitivity to damage and insensitivity to confounding factors such as environmental changes, vibrations, and structural manufacturing variability. The thesis is made that such a predictive methodology should be multi-scale and multi-domain, thus encompassing the modeling of structure, sensors, electronics, and power …


Structural Health Monitoring With Piezoelectric Wafer Active Sensors--Predictive Modeling And Simulation, Victor Giurgiutiu Jan 2010

Structural Health Monitoring With Piezoelectric Wafer Active Sensors--Predictive Modeling And Simulation, Victor Giurgiutiu

Faculty Publications

This paper starts a review of the state of the art in structural health monitoring with piezoelectric wafer active sensors and follows with highlighting the limitations of the current approaches which are predominantly experimental. Subsequently, the paper examines the needs for developing a predictive modeling methodology that would allow to perform extensive parameter studies to determine the sensing method’s sensitivity to damage and insensitivity to confounding factors such as environmental changes, vibrations, and structural manufacturing variability. The thesis is made that such a predictive methodology should be multi-scale and multi-domain, thus encompassing the modeling of structure, sensors, electronics, and power …