Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Mechanical Engineering

La0.7Sr0.3Fe0.7Ga0.3O3-Δ As Electrode Material For A Symmetrical Solid Oxide Fuel Cell, Zhibin Yang, Yu Chen, Chao Jin, Guoliang Xiao, Minfang Han, Fanglin Chen Jan 2015

La0.7Sr0.3Fe0.7Ga0.3O3-Δ As Electrode Material For A Symmetrical Solid Oxide Fuel Cell, Zhibin Yang, Yu Chen, Chao Jin, Guoliang Xiao, Minfang Han, Fanglin Chen

Faculty Publications

In this research, La0.7Sr0.3Fe0.7Ga0.3O3−δ (LSFG) perovskite oxide was successfully prepared using a microwave-assisted combustion method, and employed as both anode and cathode in symmetrical solid oxide fuel cells. A maximum power density of 489 mW cm−2 was achieved at 800 °C with wet H2 as the fuel and ambient air as the oxidant in a single cell with the configuration LSFG|La0.8Sr0.2Ga0.83Mg0.17O3−δ|LSFG. Furthermore, the cells demonstrated good stability in ...


Material Synthesis And Fabrication Method Development For Intermediate Temperature Solid Oxide Fuel Cells, Hanping Ding Jan 2014

Material Synthesis And Fabrication Method Development For Intermediate Temperature Solid Oxide Fuel Cells, Hanping Ding

Theses and Dissertations

Solid oxide fuel cells (SOFCs) are operated in high temperature conditions (750-1000 oC). The high operating temperature in turn may lead to very complicated material degradation issues, significantly increasing the cost and reducing the durability of SOFC material systems. In order to widen material selections, reduce cost, and increase durability of SOFCs, there is a growing interest to develop intermediate temperature SOFCs (500-750 oC). However, lowering operating temperature will cause substantial increases of ohmic resistance of electrolyte and polarization resistance of electrodes. This dissertation aimed at developing high-performance intermediate-temperature SOFCs through the employment of a series of layered perovskite oxides ...


A Platinum Nanowire Network As A Highly Effective Current Collector For Intermediate Temperature Solid Oxide Fuel Cells, Hanping Ding, Xingjian Xue Jan 2014

A Platinum Nanowire Network As A Highly Effective Current Collector For Intermediate Temperature Solid Oxide Fuel Cells, Hanping Ding, Xingjian Xue

Faculty Publications

We report the fabrication and evaluation of a platinum nanowire network as a highly efficient current collector for solid oxide fuel cells (SOFCs). The ink of carbon-black supported platinum nanoparticles was sprayed onto the cathode. After firing, the carbon black was oxidized and disappeared as carbon dioxide gas while the platinum nanoparticles connect with one another, forming a tree-branch-like nanowire network. The diameters of the nanowires range from 100 nm to 400 nm. Compared to a conventional platinum paste current collector, the polarization resistance of the PrBaCo2O5+δ (PBCO) cathode with a nanowire current collector was reduced ...


Cathode Polarizations Of A Cathode-Supported Solid Oxide Fuel Cell, Kevin Huang, Alessandro Zampieri, Martin Ise Aug 2010

Cathode Polarizations Of A Cathode-Supported Solid Oxide Fuel Cell, Kevin Huang, Alessandro Zampieri, Martin Ise

Faculty Publications

The concentration, activation, and total polarizations of the cathode in a cathode-supported solid oxide fuel cell (SOFC) were theoretically and experimentally investigated. In the theoretical analysis, the exchange current density of the charge transfer was considered to be dependent on the PO2 determined by the preceding O2 diffusion, resulting in an interrelationship between activation and concentration polarizations. The established nonlinear polarization equations were then applied to solve the key parameters with area specific resistances and overpotentials of the polarizations experimentally measured by electrochemical impedance spectroscopy on an operating cathode-supported SOFC. To ensure the consistency and meaningfulness of ...