Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Mechanical Engineering

Predicting Young’S Modulus Of Nanowires From First-Principles Calculations On Their Surface And Bulk Materials, Guofeng Wang, Xiaodong Li Dec 2008

Predicting Young’S Modulus Of Nanowires From First-Principles Calculations On Their Surface And Bulk Materials, Guofeng Wang, Xiaodong Li

Faculty Publications

Using the concept of surface stress, we developed a model that is able to predict Young’s modulus of nanowires as a function of nanowire diameters from the calculated properties of their surface and bulk materials. We took both equilibrium strain effect and surface stress effect into consideration to account for the geometric size influence on the elastic properties of nanowires. In this work, we combined first-principles density functional theory calculations of material properties with linear elasticity theory of clamped-end three-point bending. Furthermore, we applied this computational approach to Ag, Au, and ZnOnanowires. For both Ag and Aunanowires, our theoretical ...


Predicting The Hydrogen Pressure To Achieve Ultralow Friction And Diamondlike Carbon Surfaces From First Principles, Haibo Guo, Yue Qi, Xiaodong Li Jun 2008

Predicting The Hydrogen Pressure To Achieve Ultralow Friction And Diamondlike Carbon Surfaces From First Principles, Haibo Guo, Yue Qi, Xiaodong Li

Faculty Publications

Hydrogen atmosphere can significantly change the tribological behavior at diamond and diamondlike carbon (DLC) surfaces and the friction-reducing effect depends on the partial pressure of hydrogen. We combined density functional theory modeling and thermodynamic quantities to predict the equilibrium partial pressures of hydrogen at temperature T, PH2 (T), for a fully atomic hydrogen passivated diamondsurface. Above the equilibrium PH2 (T), ultralow friction can be achieved at diamond and DLC surfaces. The calculation agrees well with friction tests at various testing conditions. We also show that PH2 (T) increases with temperature; therefore, the temperature effect ...


Elastic Wave Field Computation In Multilayered Nonplanar Solid Structures: A Mesh-Free Semianalytical Approach, Sourav Banerjee, Tribikram Kundu Jan 2008

Elastic Wave Field Computation In Multilayered Nonplanar Solid Structures: A Mesh-Free Semianalytical Approach, Sourav Banerjee, Tribikram Kundu

Faculty Publications

Multilayered solid structures made of isotropic, transversely isotropic, or general anisotropic materials are frequently used in aerospace, mechanical, and civil structures. Ultrasonic fields developed in such structures by finite size transducers simulating actual experiments in laboratories or in the field have not been rigorously studied. Several attempts to compute the ultrasonic field inside solid media have been made based on approximate paraxial methods like the classical ray tracing and multi-Gaussian beam models. These approximate methods have several limitations. A new semianalytical method is adopted in this article to model elastic wave field in multilayered solid structures with planar or nonplanar ...