Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Mechanical Engineering

A Bismuth Attack At Grain-Boundaries Of Ceria-Based Electrolytes, Tianrang Yang, Kevin Huang Oct 2018

A Bismuth Attack At Grain-Boundaries Of Ceria-Based Electrolytes, Tianrang Yang, Kevin Huang

Faculty Publications

Bismuth is a common additive of commercial silver pastes for enhancing metallization effect; silver paste is also commonly used in high-temperature electrochemical cells as a current collector or contact layer. We here report that the minor amount of bismuth in commercial silver pastes can transport to the interface of electrode/Gd-doped CeO2 (GDC) electrolyte and seriously corrode grain-boundaries (GBs) of the GDC electrolyte, a commonly used intermediate-temperature electrolyte, causing significant ionic conductivity degradation. A comprehensive electron microscopic analysis reveals that the Bi-corrosion takes place along GBs of GDC electrolyte acting as “washing flux” agent, causing grain separation and thus blocking …


Sr2Fe1.5Mo0.5O6-Δ – Sm0.2Ce0.8O1.9 Composite Anodes For Intermediate-Temperature Solid Oxide Fuel Cells, Beibei He, Ling Zhao, Shuxiang Song, Tong Liu, Fanglin Chen, Changrong Xia Mar 2012

Sr2Fe1.5Mo0.5O6-Δ – Sm0.2Ce0.8O1.9 Composite Anodes For Intermediate-Temperature Solid Oxide Fuel Cells, Beibei He, Ling Zhao, Shuxiang Song, Tong Liu, Fanglin Chen, Changrong Xia

Faculty Publications

Sr2Fe1.5Mo0.5O6−δ (SFM) perovskite is carefully investigated as an anode material for solid oxide fuel cells with LaGaO3-based electrolytes. Its electronic conductivity under anodic atmosphere is measured with four-probe method while its ionic conductivity is determined with oxygen permeation measurement. Samaria doped ceria (SDC) is incorporated into SFM electrode to improve the anodic performance. A strong relation is observed between SDC addition and polarization losses, suggesting that the internal SFM-SDC contacts are active for H2 oxidation. The best electrode performance is achieved for the composite with 30 wt% SDC addition, resulting …


Sr2Fe1.5Mo0.5O6 As Cathodes For Intermediate-Temperature Solid Oxide Fuel Cells With La0.8Sr0.2Ga0.87Mg0.13O3 Electrolyte, Guoliang Xiao, Qiang Liu, Fei Zhao, Lei Zhang, Changrong Xia, Fanglin Chen Mar 2011

Sr2Fe1.5Mo0.5O6 As Cathodes For Intermediate-Temperature Solid Oxide Fuel Cells With La0.8Sr0.2Ga0.87Mg0.13O3 Electrolyte, Guoliang Xiao, Qiang Liu, Fei Zhao, Lei Zhang, Changrong Xia, Fanglin Chen

Faculty Publications

The performance of Sr2Fe1.5Mo0.5O6 (SFMO) as a cathode material has been investigated in this study. The oxygen ionic conductivityof SFMO reaches 0.13 S cm-1 at 800°C in air. The chemical diffusion coefficient (Dchem) and surface exchange constant (kex) of SFMO at 750°C are 5.0 x 10-6 cm2 s-1 and 2.8 x 10-5 cm s-1, respectively, suggesting that SFMO may have good electrochemicalactivity for oxygen reduction. SFMO shows a thermal expansion coefficient (TEC) of 14.5 x 10-6 K-1 the …


Effective Ionic Conductivity Of A Novel Intermediate-Temperature Mixed Oxide-Ion And Carbonate-Ion Conductor, Xue Li, Guoliang Xiao, Kevin Huang Dec 2010

Effective Ionic Conductivity Of A Novel Intermediate-Temperature Mixed Oxide-Ion And Carbonate-Ion Conductor, Xue Li, Guoliang Xiao, Kevin Huang

Faculty Publications

A systematic investigation on the effective ionic conductivity (σm) of a novel intermediate-temperature mixed oxide-ion and carbonate-ion conductor MOCC consisting of a ceria phase and a carbonate phase is reported. The study explicitly shows that the observed remarkable temperature-dependent σm is primarily the result of softening/melting of the carbonate phase as the physical state of the carbonate phase transforms from solid, softened to molten. Differential scanning calorimetry analysis complements the understanding of the observed electrical behavior by revealing temperatures of melting and solidification in agreement with the onset temperatures of σm. In addition, the …


Oxygen Permeation Through Cobalt-Containing Perovskites: Surface Oxygen Exchange Vs. Lattice Oxygen Diffusion, Kevin Huang, John B. Goodenough May 2001

Oxygen Permeation Through Cobalt-Containing Perovskites: Surface Oxygen Exchange Vs. Lattice Oxygen Diffusion, Kevin Huang, John B. Goodenough

Faculty Publications

The oxygen permeation fluxes from p′O2 to pnO2 (p′O2>pnO2) across cobalt-containing perovskite ceramic membranes La1−xSrxCoO3−δ and SrCo0.8Fe0.2O3−δ were measured by gas chromatography as functions of oxygen chemical potential gradient, temperature, thickness, and catalytic activity on the surface. Power indexes 0.5>n>0 for uncatalyzed La1−xSrxCoO3−δ and 1>n>0.5 for SrCo0.8Fe0.2O3−δ were obtained when JO2 vs. p′nO2p'′nO2 …


Structural And Electrical Characterization Of A Novel Mixed Conductor: Ceo2 - Sm2O3 - Zro2 Solid Solution, W. Huang, P. Shuk, M. Greenblatt, M. Croft, Fanglin Chen, M. Liu Jan 2000

Structural And Electrical Characterization Of A Novel Mixed Conductor: Ceo2 - Sm2O3 - Zro2 Solid Solution, W. Huang, P. Shuk, M. Greenblatt, M. Croft, Fanglin Chen, M. Liu

Faculty Publications

solid solutions were synthesized for the first time by the hydrothermal method. The electrical properties of the solid solutions have been studied in air and under reducing conditions. Solid solutions with the fluorite structure were formed in all of the studied range of substitution after calcination at 1500°C. With increasing substitution up to 30 mol %, the electronic conductivity increases under a reducing atmosphere. The solid solution has good mixed electronic and ionic conductivity; the total conductivity is 0.42 S/cm at and 700°C with an estimated ionic conductivity of ca. .