Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 25 of 25

Full-Text Articles in Mechanical Engineering

Electrochemical Capture Of Co2 From Natural Gas Using A High-Temperature Ceramic-Carbonate Membrane, Jingjing Tong, Lingling Zhan, Jie Fang, Minfang Han, Kevin Huang Jan 2015

Electrochemical Capture Of Co2 From Natural Gas Using A High-Temperature Ceramic-Carbonate Membrane, Jingjing Tong, Lingling Zhan, Jie Fang, Minfang Han, Kevin Huang

Faculty Publications

This study reports the first investigation of using a ceramic-carbonate dual-phase membrane to electrochemically separate CO2 from a simulated natural gas. The CO2 permeation flux density was systematically studied as a function of temperature, CO2 partial pressure and time. As expected, the flux density was observed to increase with temperature and CO2 partial pressure. Long-term stability test showed that flux density experienced an initial performance-improving “break-in” period followed by a slow decay. Post-test microstructural analysis suggested that a gradual loss of carbonate during the test could be the cause of the flux-time behavior observed.


Stabilizing Electrochemical Carbon Capture Membrane With Al2O3 Thin-Film Overcoating Synthesized By Chemical Vapor Deposition, Jingjing Tong, Fengzhan Si, Lingling Zhang, Jie Fang, Minfang Han, Kevin Huang Jan 2015

Stabilizing Electrochemical Carbon Capture Membrane With Al2O3 Thin-Film Overcoating Synthesized By Chemical Vapor Deposition, Jingjing Tong, Fengzhan Si, Lingling Zhang, Jie Fang, Minfang Han, Kevin Huang

Faculty Publications

Development of high-efficiency and cost-effective carbon capture technology is a central element of our effort to battle the global warming and climate change. Here we report that the unique high-flux and high-selectivity of electrochemical silver-carbonate dual-phase membranes can be retained for an extended period of operation by overcoating the surfaces of porous silver matrix with a uniform layer of Al2O3 thin-film derived from chemical vapor deposition.


Host-Guest Interaction Dictated Selective Adsorption And Fluorescence Quenching Of A Luminescent Lightweight Metal-Organic Framework Toward Liquid Explosives, Dan Liu, Xiaojuan Liu, Yongxin Liu, Yang Yu, Fanglin Chen, Cheng Wang Oct 2014

Host-Guest Interaction Dictated Selective Adsorption And Fluorescence Quenching Of A Luminescent Lightweight Metal-Organic Framework Toward Liquid Explosives, Dan Liu, Xiaojuan Liu, Yongxin Liu, Yang Yu, Fanglin Chen, Cheng Wang

Faculty Publications

In this article, we report the successful preparation of a Mg-based luminescent MIL-53 metal–organic framework (MOF), namely [Mg2(BDC)2(BPNO)]·2DMF (1) (BDC = 1,4-benzene dicarboxylate, BPNO = 4,4’- dipyridyl-N,N’-dioxide, DMF = N,N-dimethylformamide) in a mixed solvent containing a 2 : 3 volume ratio of DMF and ethanol (EtOH) under solvothermal conditions. Desolvated compound 1a can be used as an absorbent for selective adsorption and separation of liquid explosives, including nitroaromatic (nitrobenzene (NB)) and nitroaliphatic (nitromethane (NM) and nitroethane (NE)) compounds, through single crystal-to-single crystal (SC–SC) transformations. As one of the weakly luminescent MOFs, the luminescence of compound 1a could be quenched by …


A Sinteractive Ni-Bazr0.8Y0.2O3-Δ Composite Membrane For Hydrogen Separation, Shumin Fang, Siwei Wang, Kyle S. Brinkman, Fanglin Chen Apr 2014

A Sinteractive Ni-Bazr0.8Y0.2O3-Δ Composite Membrane For Hydrogen Separation, Shumin Fang, Siwei Wang, Kyle S. Brinkman, Fanglin Chen

Faculty Publications

BaZr0.8Y0.2O3−δ (BZY) is an excellent candidate material for hydrogen permeation membranes due to its high bulk proton conductivity, mechanical robustness, and chemical stability in H2O- and CO2-containing environments. Unfortunately, the use of BZY as a separation membrane has been greatly restrained by its highly refractory nature, poor grain boundary proton conductivity, high number of grain boundaries resulting from limited grain growth during sintering, as well as low electronic conductivity. These problems can be resolved by the fabrication of a Ni–BZY composite membrane with large BZY grains, which requires the development …


Enhanced Reducibility And Conductivity Of Na/K-Doped Srti0.8Nb0.2O3, Guoliang Xiao, Sirikanda Nuansaeng, Lei Zhang, Suwit Suthirakun, Andreas Heyden, Hans-Conrad Zur Loye, Fanglin Chen Sep 2013

Enhanced Reducibility And Conductivity Of Na/K-Doped Srti0.8Nb0.2O3, Guoliang Xiao, Sirikanda Nuansaeng, Lei Zhang, Suwit Suthirakun, Andreas Heyden, Hans-Conrad Zur Loye, Fanglin Chen

Faculty Publications

Donor and acceptor co-doped SrTiO3 materials have shown interesting features in their conductivity and reducibility. In this work, 10 mol% Na+ or K+ as acceptor dopants have been introduced into the A-site of donor-doped strontium titanate, SrTi0.8Nb0.2O3, and the doping impact on their properties has been studied. By doping with Na or K, the sinterability of SrTi0.8Nb0.2O3 in reducing atmospheres has been improved. Na0.1Sr0.9Ti0.8Nb0.2O3 and K0.1Sr0.9Ti0.8Nb0.2O3 show metallic …


High Performance Low Temperature Solid Oxide Fuel Cells With Novel Electrode Architecture, Yu Chen, Qian Liu, Zhibin Yang, Fanglin Chen, Minfang Han Dec 2012

High Performance Low Temperature Solid Oxide Fuel Cells With Novel Electrode Architecture, Yu Chen, Qian Liu, Zhibin Yang, Fanglin Chen, Minfang Han

Faculty Publications

In this study, we have fabricated high performance low temperature solid oxide fuel cells (LT-SOFCs) with both acicular anodes and cathodes with thin Gd-doped ceria (GDC) electrolyte film. The acicular Ni-Gd0.1Ce0.9O2−δ (Ni-GDC) anode was prepared using freeze drying tape casting, while the hierarchically porous cathode with nano-size Sm0.5Sr0.5CoO3 (SSC) particles covering an acicular GDC skeleton was prepared by a combination of freeze drying tape casting and self-rising approaches. The acicular electrodes with 5–200 μm pores/channels enhance mass transport, while SSC particles of about 50 nm in the cathode promote …


Atomistic Investigation Of Scratching-Induced Deformation Twinning In Nanocrystalline Cu, Junjie Zhang, Tao Sun, Yoganda Yan, Dong Shen, Xiaodong Li Oct 2012

Atomistic Investigation Of Scratching-Induced Deformation Twinning In Nanocrystalline Cu, Junjie Zhang, Tao Sun, Yoganda Yan, Dong Shen, Xiaodong Li

Faculty Publications

Deformation twinning is an important deformation mode of nanocrystalline metals. In current study, we investigate the scratching-induced deformation twinning in nanocrystallineCu by means of molecular dynamics simulations. The tribological behavior, the deformation mechanisms, the formation mechanism of deformation twins, and the grain size dependence of the propensity of deformation twinning are elucidated. Simulation results demonstrate that deformation twinning plays an important role in the plastic deformation of nanocrystallineCu under nanoscratching, in addition to dislocation activity and grain boundary-associated mechanism. The nucleation of initial twinning partial dislocations originates from the dissociation of lattice partial dislocations that emit from grain boundary triple …


Order-Disorder Transition Of Aragonite Nanoparticles In Nacre, Zaiwang Huang, Xiaodong Li Jul 2012

Order-Disorder Transition Of Aragonite Nanoparticles In Nacre, Zaiwang Huang, Xiaodong Li

Faculty Publications

Understanding nacre’s bottom-up biomineralization mechanism, particularly, how individual aragonite platelets are formed, has long remained elusive due to its crystallographic peculiarity and structural complexity. Here we report that crystallographic order-disorder transition can be triggered within individual aragonite platelets in pristine nacre by means of heat treatment and/or inelastic deformation, offering a unique opportunity to discriminate mysterious aragonite nanoparticles in transmission electron microscopy. Our findings unambiguously uncover why aragonite nanoparticles in pristine nacre have long been inaccessible under TEM observation, which is attributed to the monocrystal-polycrystal duality of the aragonite platelet. The underlying physical mechanism for why an individual aragonite platelet …


Aerosol-Assisted Synthesis Of Monodisperse Single-Crystalline Α-Cristobalite Nanospheres, Xingmao Jiang, Lihong Bao, Yung-Sung Cheng, Darren R. Dunphy, Xiaodong Li, C. Jeffrey Brinker Dec 2011

Aerosol-Assisted Synthesis Of Monodisperse Single-Crystalline Α-Cristobalite Nanospheres, Xingmao Jiang, Lihong Bao, Yung-Sung Cheng, Darren R. Dunphy, Xiaodong Li, C. Jeffrey Brinker

Faculty Publications

Monodisperse single-crystalline α-cristobalite nanospheres have been synthesized by hydrocarbon-pyrolysis-induced carbon deposition on amorphous silica aerosol nanoparticles, devitrification of the coated silica at high temperature, and subsequent carbon removal by oxidation. The nanosphere size can be well controlled by tuning the size of the colloidal silica precursor. Uniform, high-purity nanocrystalline α-cristobalite is important for catalysis, nanocomposites, advanced polishing, and understanding silica nanotoxicology.


Synthesis, Structural, Optical And Mechanical Characterization Of Srb2O4 Nanorods, Rui Li, Lihong Bao, Xiaodong Li Oct 2011

Synthesis, Structural, Optical And Mechanical Characterization Of Srb2O4 Nanorods, Rui Li, Lihong Bao, Xiaodong Li

Faculty Publications

Single crystalline strontium borate (SrB2O4) nanorods were synthesized for the first time via a facile sol–gel route at low temperature. The SrB2O4 nanorods have a good crystalline nature with the growth direction along the [511] orientation and they are transparent from the ultraviolet to the visible regimes. Nanoscale three-point bending tests were performed directly on individual nanorods to probe their mechanical properties using an atomic force microscope. The elastic modulus of SrB2O4 nanorods was measured to be 158.2 ± 2.8 GPa, exhibiting a significant increase compared with other borate nanostructures …


Adhesion At Diamond /Metal Interfaces: A Density Functional Theory Study, Haibo Guo, Yue Qi, Xiaodong Li Feb 2010

Adhesion At Diamond /Metal Interfaces: A Density Functional Theory Study, Haibo Guo, Yue Qi, Xiaodong Li

Faculty Publications

To understand the basic material properties required in selecting a metallic interlayer for enhanced adhesion of diamondcoatings on the substrates, the interfaces between diamond and metals with different carbide formation enthalpies (Cu, Ti, and Al) are studied using density functional theory. It is found that the work of separation decreases, while the interface energy increases, with the carbide formation enthalpy ΔHf (Tiys (Ti>Cu>Al), is needed to achieve a higher overall interface strength. In addition, when the surface energy is larger than the interface energy, a wetted diamond/metal interface is formed during diamondnucleation, providing the strongest adhesion …


Enhance Diamond Coating Adhesion By Oriented Interlayer Microcracking, Habio Guo, Xingcheng Xiao, Yue Qi, Zhi-Hui Xu, Xiaodong Li Dec 2009

Enhance Diamond Coating Adhesion By Oriented Interlayer Microcracking, Habio Guo, Xingcheng Xiao, Yue Qi, Zhi-Hui Xu, Xiaodong Li

Faculty Publications

In this paper, we report a microcrack toughening mechanism for enhancing the adhesion of diamondcoating. The oriented microcracks were formed within the TiC interlayer to dissipate strain energy and accommodate deformation via the crack opening-closing mechanism, thus enhancing the coating/substrate interfacial toughness. The delamination of diamondcoating was effectively prevented when the parallel microcracks were confined within the interlayer and arrested at interfaces of coating/interlayer/substrate. Density functional theory calculations revealed that the highly anisotropicfracture strength of the TiC phase energetically favors crack initiation and propagation along (100) planes only, which are 54.7° away from the interface. These microcracks are constrained inside …


Low Temperature, Organic-Free Synthesis Of Ba3B6O9(Oh)6 Nanorods And Ss-Bab2O4 Nanospindles, Rui Li, Xinyoung Tao, Xiaodong Li Feb 2009

Low Temperature, Organic-Free Synthesis Of Ba3B6O9(Oh)6 Nanorods And Ss-Bab2O4 Nanospindles, Rui Li, Xinyoung Tao, Xiaodong Li

Faculty Publications

Using a low temperature, organic-free hydrothermal technique, single-crystalline barium polyborate Ba3B6O9(OH)6 (BBOH) nanorods were synthesized. It was found that β-BaB2O4(BBO) nanospindles can be achieved by annealing the BBOH nanorods at a relatively low temperature of 810 °C. Transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) techniques were used to characterize these nanomaterials. The formation mechanisms are discussed in conjunction with the crystallographic characteristics and surface energy of the BBOH nanorods and BBO nanospindles. UV-vis absorption spectra demonstrated that both BBOH nanorods and BBO nanospindles are …


Predicting Young’S Modulus Of Nanowires From First-Principles Calculations On Their Surface And Bulk Materials, Guofeng Wang, Xiaodong Li Dec 2008

Predicting Young’S Modulus Of Nanowires From First-Principles Calculations On Their Surface And Bulk Materials, Guofeng Wang, Xiaodong Li

Faculty Publications

Using the concept of surface stress, we developed a model that is able to predict Young’s modulus of nanowires as a function of nanowire diameters from the calculated properties of their surface and bulk materials. We took both equilibrium strain effect and surface stress effect into consideration to account for the geometric size influence on the elastic properties of nanowires. In this work, we combined first-principles density functional theory calculations of material properties with linear elasticity theory of clamped-end three-point bending. Furthermore, we applied this computational approach to Ag, Au, and ZnOnanowires. For both Ag and Aunanowires, our theoretical predictions …


Predicting The Hydrogen Pressure To Achieve Ultralow Friction And Diamondlike Carbon Surfaces From First Principles, Haibo Guo, Yue Qi, Xiaodong Li Jun 2008

Predicting The Hydrogen Pressure To Achieve Ultralow Friction And Diamondlike Carbon Surfaces From First Principles, Haibo Guo, Yue Qi, Xiaodong Li

Faculty Publications

Hydrogen atmosphere can significantly change the tribological behavior at diamond and diamondlike carbon (DLC) surfaces and the friction-reducing effect depends on the partial pressure of hydrogen. We combined density functional theory modeling and thermodynamic quantities to predict the equilibrium partial pressures of hydrogen at temperature T, PH2 (T), for a fully atomic hydrogen passivated diamondsurface. Above the equilibrium PH2 (T), ultralow friction can be achieved at diamond and DLC surfaces. The calculation agrees well with friction tests at various testing conditions. We also show that PH2 (T) …


Iii Finishing, Lapping, Honing And Polishing: Processes, Characterisation And Novel Techniques-Experimental Research On Ultra-Smooth Surface Polishing Based On Two-Dimensional Vibration Of Liquid, Zhong Ning Guo, X. Z. Huang, Z. G. Huang, Z. Q. Yu, T. M. Yue, Wing Bun Lee Jan 2007

Iii Finishing, Lapping, Honing And Polishing: Processes, Characterisation And Novel Techniques-Experimental Research On Ultra-Smooth Surface Polishing Based On Two-Dimensional Vibration Of Liquid, Zhong Ning Guo, X. Z. Huang, Z. G. Huang, Z. Q. Yu, T. M. Yue, Wing Bun Lee

Faculty Publications

No abstract provided.


Self-Assembled Composite Nano-/Micronecklaces With Sio2 Beads In Boron Strings, Hai Ni, Xiaodong Li Jul 2006

Self-Assembled Composite Nano-/Micronecklaces With Sio2 Beads In Boron Strings, Hai Ni, Xiaodong Li

Faculty Publications

Nano-/micronecklaces with SiO2 beads in boron strings were synthesized by simply sublimating the desired powders in a sealed quartz tube at high temperature. The boron strings have a rectangular cross section with width varying from 80to1000nm while the SiO2 beads bear either spindle or spherical shape with a size ranging from 100nmto5μm. The spacing between the SiO2 beads is uniform in each boron string. Both the boron strings and the SiO2 beads are amorphous and free of defects. The supersaturated vapors of silicon and oxygen induced the SiO2 bead formation.


Nanomechanical Characterization Of Cavity Growth And Rupture In Hydrogen-Implanted Single-Crystal Batio3., Young-Bae Park, Patrick Nardi, Xiaodong Li, Harry A. Atwater Apr 2005

Nanomechanical Characterization Of Cavity Growth And Rupture In Hydrogen-Implanted Single-Crystal Batio3., Young-Bae Park, Patrick Nardi, Xiaodong Li, Harry A. Atwater

Faculty Publications

A thermodynamic model of cavitynucleation and growth in ion-implanted single-crystal BaTiO3 layer is proposed, and cavity formation is related to the measured mechanical properties to better understand hydrogen implantation-induced layer transfer processes for ferroelectric thin films. The critical radius for cavitynucleation was determined experimentally from blistering experiments performed under isochronal anneal conditions and was calculated using continuum mechanical models for deformation and fracture, together with thermodynamic models. Based on thermodynamic modeling, we suggest that cavitiesgrow toward the cracking criteria at a critical blister size whereupon gas is emitted from ruptured cavities. The main driving force for layer splitting is …


Effect Of Tensile Offset Angles On Micro/Nanoscale Tensile Testing, Xiaodong Li, Xinnan Wang, Wei-Che Chang, Yuh-Jin Chao, Ming Chang Mar 2005

Effect Of Tensile Offset Angles On Micro/Nanoscale Tensile Testing, Xiaodong Li, Xinnan Wang, Wei-Che Chang, Yuh-Jin Chao, Ming Chang

Faculty Publications

For one-dimensional (1D) structures such as tubes, wires, and beams, tensile testing is a simple and reliable methodology for measuring their mechanical properties. The tensile offset angle effect on mechanical property measurement has long been ignored. In this study, theoretical and finite-element analysis(FEA) models for analyzing the tensile offset angle effect have been established. It is found that longitudinal stress decreases with increasing offset angles. The theoretically calculated elastic modulus relative errors reach 4.45% at the offset angle of 10°, whereas the experimentally measured elastic modulus relative errors are 45.4% at the offset angle of 15°. The difference in elastic …


Noble Metal Nanostructures Synthesized Inside Mesoporous Nanotemplate Pores, J. Arbiol, E. Rossinyol, A. Cabot, F. Peiró, A. Cornet, J. R. Morante, Fanglin Chen, Meilin Liu Jan 2004

Noble Metal Nanostructures Synthesized Inside Mesoporous Nanotemplate Pores, J. Arbiol, E. Rossinyol, A. Cabot, F. Peiró, A. Cornet, J. R. Morante, Fanglin Chen, Meilin Liu

Faculty Publications

Noble metal impregnation has resulted in the inclusion of metal nanostructures within the SBA-15 mesoporous silica hexagonal pores (from nanoclusters to nanowires). A bright-field transmission electron microscopy three-dimensional reconstruction is proposed to analyze the localization of nanostructures within the pores of mesoporous nanotemplates. The method allows corroboration whether the nanostructures are synthesized inside the pores or they are synthesized alternatively on the nanotemplate aggregates exterior surface.


Distributions Of Nobel Metal Pd And Pt In Mesoporous Silica, J. Arbiol, A. Cabot, J. R. Morante, Fanglin Chen, Meilin Liu Oct 2002

Distributions Of Nobel Metal Pd And Pt In Mesoporous Silica, J. Arbiol, A. Cabot, J. R. Morante, Fanglin Chen, Meilin Liu

Faculty Publications

Mesoporous silicananostructures have been synthesized and loaded with Pd and Pt catalytic noble metals. It is found that Pd forms small nanoclusters (3–5 nm) on the surface of the mesoporous structure whereas Pt impregnation results in the inclusion of Pt nanostructures within the silica hexagonal pores (from nanoclusters to nanowires). It is observed that these materials have high catalyticproperties for CO–CH4CO–CH4CO–CH4 combustion, even in a thick film form. In particular, results indicate that the Pt and Pd dispersed in mesoporous silica are catalytically active as a selective filter for gas sensors.


Structural And Electrical Characterization Of A Novel Mixed Conductor: Ceo2 - Sm2O3 - Zro2 Solid Solution, W. Huang, P. Shuk, M. Greenblatt, M. Croft, Fanglin Chen, M. Liu Jan 2000

Structural And Electrical Characterization Of A Novel Mixed Conductor: Ceo2 - Sm2O3 - Zro2 Solid Solution, W. Huang, P. Shuk, M. Greenblatt, M. Croft, Fanglin Chen, M. Liu

Faculty Publications

solid solutions were synthesized for the first time by the hydrothermal method. The electrical properties of the solid solutions have been studied in air and under reducing conditions. Solid solutions with the fluorite structure were formed in all of the studied range of substitution after calcination at 1500°C. With increasing substitution up to 30 mol %, the electronic conductivity increases under a reducing atmosphere. The solid solution has good mixed electronic and ionic conductivity; the total conductivity is 0.42 S/cm at and 700°C with an estimated ionic conductivity of ca. .


Characterization Of The Si/Sio2 Interface Formed By Remote Plasma Enhanced Chemical Vapor Deposition From Sih4/N2O With Or Without Chlorine Addition, Young-Bae Park, Xiaodong Li, Shi-Woo Rhee Jul 1996

Characterization Of The Si/Sio2 Interface Formed By Remote Plasma Enhanced Chemical Vapor Deposition From Sih4/N2O With Or Without Chlorine Addition, Young-Bae Park, Xiaodong Li, Shi-Woo Rhee

Faculty Publications

The Si/SiO2interface formed by remote plasma enhanced chemical vapor deposition (RPECVD) at low temperature with SiH4/N2O or SiH4/N2O/Cl2 was studied and compared with thermal oxidation. The interface of the CVD SiO2 without chlorine addition is rougher than that with chlorine addition. But the surface roughness of CVD SiO2 films increases with chlorine addition. The thermal oxidation induces strong interface strains, and the strains generated by the CVD SiO2 without chlorine addition are stronger and are distributed more nonuniformly than those by the chlorinated SiO2. …


Microstructure And Deposition Rate Of Aluminum Thin Films From Chemical Vapor Deposition With Dimethylethylamine Alane, Byoung-Youp Kim, Xiaodong Li, Shi-Woo Rhee Jun 1996

Microstructure And Deposition Rate Of Aluminum Thin Films From Chemical Vapor Deposition With Dimethylethylamine Alane, Byoung-Youp Kim, Xiaodong Li, Shi-Woo Rhee

Faculty Publications

Deposition of aluminumfilm from DMEAA in the temperature range of 100–300 °C has been studied. In this temperature range, there is a maximum deposition rate at around 150 °C. The film deposited at 190 °C has elongated blocklike grain shapes, which are ∼600 nm in width and 930 nm in length. Grains in the film deposited at 150 °C showed an equiaxed structure with grain size in the range of 100–300 nm in a film with 600 nm thickness. Aluminum oxide particle inclusion was observed especially at high deposition temperature. Plausible reaction pathways of DMEAA dissociation were suggested to explain …


Structural Characterization Of Aluminum Films Deposited On Sputtered-Titanium Nitride/ Silicon Substrate By Metalorganic Chemical Vapor Deposition From Dimethylethylamine Alane, Xiaodong Li, Byoung-Youp Kim, Shi-Woo Rhee Dec 1995

Structural Characterization Of Aluminum Films Deposited On Sputtered-Titanium Nitride/ Silicon Substrate By Metalorganic Chemical Vapor Deposition From Dimethylethylamine Alane, Xiaodong Li, Byoung-Youp Kim, Shi-Woo Rhee

Faculty Publications

Alfilmsdeposited on sputtered‐TiN/Si substrate by metalorganic chemical vapor deposition(MOCVD) from dimethylethylamine alane (DMEAA) were characterized using x‐ray diffraction(XRD),Auger electron spectroscopy(AES),atomic force microscopy(AFM), and transmission electron microscopy (TEM). The TiN filmsputtered on the Si has a preferred orientation along the growth direction with the 〈111〉 of the film parallel to the Si〈111〉. Sputtering of the TiN film on the Si induced strains at the interface. The TiN/Si interface is flat while the Al/TiN interface is rough. There exist many dislocations at the Al/TiN interface. The Al2O3 phase was formed at the Al/TiN interface during the early stages of …