Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

University of South Carolina

Electrical and Computer Engineering

Solid oxide fuel cells

Publication Year

Articles 1 - 3 of 3

Full-Text Articles in Mechanical Engineering

A Platinum Nanowire Network As A Highly Effective Current Collector For Intermediate Temperature Solid Oxide Fuel Cells, Hanping Ding, Xingjian Xue Jan 2014

A Platinum Nanowire Network As A Highly Effective Current Collector For Intermediate Temperature Solid Oxide Fuel Cells, Hanping Ding, Xingjian Xue

Faculty Publications

We report the fabrication and evaluation of a platinum nanowire network as a highly efficient current collector for solid oxide fuel cells (SOFCs). The ink of carbon-black supported platinum nanoparticles was sprayed onto the cathode. After firing, the carbon black was oxidized and disappeared as carbon dioxide gas while the platinum nanoparticles connect with one another, forming a tree-branch-like nanowire network. The diameters of the nanowires range from 100 nm to 400 nm. Compared to a conventional platinum paste current collector, the polarization resistance of the PrBaCo2O5+δ (PBCO) cathode with a nanowire current collector was reduced …


Micro Modeling Study Of Cathode/Electrolyte Interfacial Stresses For Solid Oxide Fuel Cells, Xinfang Jin, Xingjian Xue May 2013

Micro Modeling Study Of Cathode/Electrolyte Interfacial Stresses For Solid Oxide Fuel Cells, Xinfang Jin, Xingjian Xue

Faculty Publications

Delamination of the cathode/electrolyte interface is an important degradation phenomenon in solid oxide fuel cells (SOFCs). While the thermal stress has been widely recognized as one of the major reasons for such delamination failures, the role of chemical stress does not receive too much attention. In this paper, a micro-model is developed to study the cathode/electrolyte interfacial stresses, coupling oxygen ion transport process with structural mechanics. Results indicate that the distributions of chemical stress are very complicated at the cathode/electrolyte interface and show different patterns from those of thermal stress. The maximum principal stresses take place at the cathode/electrolyte interface …


Optimization Design Of Electrodes For Anode-Supported Solid Oxide Fuel Cells Via Genetic Algorithm, Junxiang Shi, Xingjian Xue Dec 2010

Optimization Design Of Electrodes For Anode-Supported Solid Oxide Fuel Cells Via Genetic Algorithm, Junxiang Shi, Xingjian Xue

Faculty Publications

Porous electrode is the critical component of solid-oxide fuel cells (SOFCs) and provides a functional material backbone for multi-physicochemical processes. Model based electrode designs could significantly improve SOFC performance. This task is usually performed via parameter studies for simple case and assumed property distributions for graded electrodes. When nonlinearly coupled multiparameters of electrodes are considered, it could be very difficult for the model based parameter study method to effectively and systematically search the design space. In this research, the optimization approach with a genetic algorithm is demonstrated for this purpose. An anode-supported proton conducting SOFC integrated with a fuel supply …