Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

University of South Carolina

Applied Mechanics

Aluminum oxide

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Mechanical Engineering

Stabilizing Electrochemical Carbon Capture Membrane With Al2O3 Thin-Film Overcoating Synthesized By Chemical Vapor Deposition, Jingjing Tong, Fengzhan Si, Lingling Zhang, Jie Fang, Minfang Han, Kevin Huang Jan 2015

Stabilizing Electrochemical Carbon Capture Membrane With Al2O3 Thin-Film Overcoating Synthesized By Chemical Vapor Deposition, Jingjing Tong, Fengzhan Si, Lingling Zhang, Jie Fang, Minfang Han, Kevin Huang

Faculty Publications

Development of high-efficiency and cost-effective carbon capture technology is a central element of our effort to battle the global warming and climate change. Here we report that the unique high-flux and high-selectivity of electrochemical silver-carbonate dual-phase membranes can be retained for an extended period of operation by overcoating the surfaces of porous silver matrix with a uniform layer of Al2O3 thin-film derived from chemical vapor deposition.


The Effect Of Isostatic Pressing On The Dielectric Properties Of Screen Printed Ba0.5Sr0.5Tio3 Thick Films, Siwei Wang, Lingling Zhang, Jiwei Zhai, Fanglin Chen Jan 2013

The Effect Of Isostatic Pressing On The Dielectric Properties Of Screen Printed Ba0.5Sr0.5Tio3 Thick Films, Siwei Wang, Lingling Zhang, Jiwei Zhai, Fanglin Chen

Faculty Publications

Ba0.5Sr0.5TiO3 thick films with B2O3–Li2O glass sintering aid were prepared by the screen printing method on Al2O3 substrates. A 200 MPa isostatic pressure was applied to the films before sintering. After being sintered at 950C, lower porosity and denser microstructure was obtained compared with the films without isostatic pressing. The dielectric constant and dielectric loss were 238 and 0.0028, respectively. A tunability of 61.7% was obtained for the isostatic pressed films, a 27.8% enhancement compared to unpressurized films. These results suggest that isostatic pressing …